低分子生理活性物質から考える植物学:明らかになってきた新たな機能 と分子メカニズム

岡本 昌憲¹, 瀬尾 光範²

¹宇都宮大学 バイオサイエンス教育研究センター 〒321-8505 栃木県宇都宮市峰町 350 ²理化学研究所 環境資源科学研究センター 〒230-0045 神奈川県横浜市鶴見区末広町 1-7-22

Plant biology from the perspective of bioactive small molecules: recent advances in the understanding of their new functions and regulatory mechanisms

Masanori Okamoto¹, Mitsunori Seo²

 ¹ Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-cho, Utsunomiya, Tochigi, 321-8505, Japan
 ² RIKEN Center for Sustainable Resource Science,
 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan

Keywords: bioactive small molecules, plant hormones

DOI: 10.24480/bsj-review.13b1.00224

2021年9月に開催された日本植物学会第85回大会(八王子)において,「低分子生理活性物質から考える植物学:明らかになってきた新たな機能と分子メカニズム」と題したシンポジウムを開催した。低分子生理活性物質の代表的な例として,植物ホルモンが挙げられる。 植物ホルモンは植物の発生,分化,成長,環境応答など生活環の様々な場面において不可欠な働きをするシグナル分子である。本シンポジウムではその様な分子群に焦点を当て,近年明らかになりつつあるその新たな機能や詳細な分子作用メカニズムについて議論する場を設けたいと考えて企画した。

ここでタイトルに「植物ホルモン」という言葉を用いなかった理由について,簡単に説明 したい。その一つは,植物ホルモンの定義が不明瞭になってきている点にある。オーキシン, サイトカイニン,ジベレリン,アブシシン酸,エチレンの5つの分子が古くから植物ホルモ ンとして認識されており,それはら古典的なホルモン (five classical hormones)とも呼ばれる。 これに加え現在では、ブラシノステロイド、ジャスモン酸(類),サリチル酸、ストリゴラク トンが植物ホルモンとして教科書に記載され、それらを認識する受容体の実態も明らかにな っている。しかしながら、以上の9種のホルモンのなかには、分子構造が異なるものが同一 受容体に結合する例や、特定の植物種のみに存在する分子種なども報告されている。さらに はペプチド・タンパク質の中にもいわゆる植物ホルモンとして機能するものが存在する。ペ プチド性の活性分子は「ペプチドホルモン」と呼ばれ、FT タンパク質は比較的分子量が大き いことからペプチドホルモンとは区別され「花成ホルモン(フロリゲン)」などといった形 で呼ばれることが多いと思うが、そこに明確な決まりはない。こうした中、当シンポジウム では遺伝子に直接コードされない低分子性の植物ホルモンに研究の対象を限定したかったの で「低分子生理活性物質」という語を用いることにした。また、2008年にストリゴラクトン が植物ホルモンとして機能することが明らかになったことは記憶に新しいが、今後も植物ホ ルモンと呼ばれる低分子性の活性分子が増えていくであろうと予想される。だが、「低分子 生理活性物質」のうちどの様な要素を持つものが「植物ホルモン」と呼ばれるようになるの であろうか?シンポジウムの終わりにはこの様な点についても議論したいと考え、タイトル にはあえて植物ホルモンという語を用いなかった。

この様に植物ホルモンに対する私たちの認識が変化してきているのは、様々な研究アプロ ーチにより、新たな発見が次々となされていることに起因する。これは低分子性の植物ホル モン・生理活性物質に限定しても言えることである。本総説集では、異なるバックグラウン ドを持つ6名の研究者が、それぞれの視点から自身の研究や周囲の研究動向について解説を する。これが様々な角度から植物ホルモンを見つめ直す機会となり、今後の本研究分野の発 展に少しでも貢献できれば幸いである。

アブシシン酸の多様な機能

岡本 昌憲 1

¹宇都宮大学 バイオサイエンス教育研究センター 〒321-8505 栃木県宇都宮市峰町 350

Various physiological functions of abscisic acid

Masanori Okamoto¹

¹Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-cho, Utsunomiya, Tochigi 321-8505, Japan

Keywords: abscisic acid, anthocyan, flowering, morphogenesis, root growth

DOI: 10.24480/bsj-review.13b2.00225

1. はじめに

植物ホルモンのアブシシン酸(ABA)は乾燥ストレス応答,気孔閉鎖,種子休眠に主要な役割を果たす。ABAの代謝制御や受容体以降のシグナル伝達経路が明らかにされたことで,先述した主要なABAの生理作用を引き起こす分子機構の理解が進んだ。しかし,他の植物ホルモンにも見られるようにABAの生理作用は多面的である。ABAの主要な生理作用の分子機構については,これまでの解説書や総説を参考にして頂き(浅見 and 柿本 2016; Marion-Poll and Seo 2019; Zhang 2014),ここではABAの生理作用としては脇役な部分になるかもしれないが,植物の生活環におけるABAの様々な機能についてスポットを当てて解説したい。

2. ABA による開花制御 (図1参照)

ABA は開花制御に関して対照的な作用を持つ(Shu et al. 2018)。ABA が開花を抑制す る場合もあれば,促進する場合もある。なぜこのように相反する生理作用が存在し,そ れらがどのように制御されているのかが,徐々に明らかになってきた。まずは,ABA が 開花を遅延することについて説明する。多くの植物種でABA は開花を抑制することが知 られている。ABA を散布することでも開花が遅くなることから(Wang et al. 2013),ABA は開花に対して負に制御するシグナル分子といえる。また,ABA 欠損変異株のシロイヌ ナズナを土で生育させると野生株よりも早く花が咲き,一方でABA を蓄積した変異株は 開花が遅い形質を示す。そして,ABA のシグナル因子等(ABI3,ABI4,ABI5 転写因子) などを過剰発現させたトランスジェニック植物の開花も遅くなる(Kurup et al. 2000; Zhang et al. 2005; Shu et al. 2016; Foyer et al. 2012; Wang et al. 2013)。ABA が増加するこ とで, ABA のシグナル伝達を介して ABI3, ABI4, ABI5 の転写因子などが開花抑制因子で ある FLC 遺伝子の発現量を高め,開花スイッチである FT タンパク質や開花制御転写因 子 SOC1 の遺伝子発現を抑制する (Shu et al. 2016; Wang et al. 2013)。また一方で,ABI4 転写因子は,植物体におけるジベレリン(GA)の量を抑制することで開花を抑制する (Shu et al. 2016)。これらの分子機構によって,ABA は開花抑制に作用すると考えられる。

一方で、ABA が開花を促進する事例も報告されている(Martignago et al. 2020)。植物 にとって深刻な乾燥ストレスが訪れる前に開花を早め、種子を付けることができれば、 植物の生存戦略として有効である。乾燥によって増加した ABA が乾燥逃避のための開花 を引き起こす分子シグナルとして作用する報告例がある。乾燥ストレスによって増加し た ABA は bZIP 転写因子の ABF3 や ABF4 を活性化するが, abf3 と abf4 の 2 重変異株で は開花遅延の形質を示す(Hwang et al. 2019; Yoshida et al. 2010)。そのため、この両者の 転写因子は開花制御因子を制御することが予想され, abf3 と abf4 の 2 重変異株では転写 因子 SOCI 遺伝子の発現が抑制されていた(Hwang et al., 2019)。ABF3 と ABF4 転写因 子は SOCI 遺伝子のプロモーターには直接結合はせず,転写因子 NF-YC と複合体を形成 することで、NF-YC 転写因子が SOCI 遺伝子のプロモーターに結合する (Hwang et al. 2019)。そして、この複合体は、SOCI遺伝子の転写を促進し、乾燥逃避のために早期に 開花をもたらす。また,乾燥誘導性のABAは概日時計の制御因子である GIGANTEA (GI) を介して CONSTANS (CO) をポジティブに制御することで,FT 遺伝子の発現を高め, 長日環境下における乾燥ストレス誘導性の開花を引き起こすことも示唆されている (Riboni et al. 2016)。このように、ABA が開花制御に対して異なる ABA シグナル伝達 経路を介して対照的な作用を持つ分子機構が示されたものの、どのようにそれらの制御 機能が切り替わるのかは、未だ明確ではない。

図 1. ABA による開花制御

図 2. ABA による根の成長制御

3. ABA による根の成長制御(図2参照)

ABA は根の形態や成長を制御する。低濃度の ABA は主根の成長を促進することが古 くから知られていたが、この分子機構はこれまで不明であった (Mc Adam et al. 2016; Saab et al. 1990; Spollen et al. 2000)。ABA シグナル因子の負の制御因子である 2 型タンパク質 脱リン酸化酵素 (PP2C) の多重変異株 (abi1-2/abi2-2/hab1-1/pp2ca-1 の四重変異株,以下 Oabi2-2 変異株)は、僅かに ABA 感受性が向上しており、主根の伸長が野生株に比べて 長い形質を示す(Miao et al. 2021)。この形質は低濃度の ABA を野生株に投与したとき と同様の形質を示す。細胞伸長に関わる ATP 加水分解酵素(ATPase)の阻害剤を投与する ことで、低濃度の ABA 投与や Oabi2-2 変異株における根の伸長促進が阻害されることか ら、低濃度の ABA は ATPase の活性化を促進していると予想された。実際に、低濃度の ABA 投与や Qabi2-2 変異株の主根の伸長領域領域では、細胞内からアポプラストへのプ ロトン流出量が増加しており, ATPase の活性化も起きていた。このことから, オーキシ ンの生理作用で見られるように、低濃度の ABA はアポプラストの酸性化を引き起こし、 これに伴い細胞壁分解酵素の活性化によって細胞壁が緩み、細胞伸長が起きていると考 えられる。では、どのように ABA シグナル因子が ATPase の活性を制御しているのだろ うか?ABA シグナル伝達因子の PP2C のメンバーである ABI1 は ATPase の AHA2 に結 合し、AHA2を脱リン酸化している事が示された。つまり、低濃度の ABA は高親和性型 ABA 受容体を介して PP2C の活性を抑制する。その結果, ATPase のリン酸化状態が維持 され、アポプラストへのプロトン流出量増加による酸性化によって、根の細胞伸長が起 こることが示されている。

一方で、根における ABA 濃度が高くなると、主根の伸長阻害が起きる。シロイヌナズ ナでは、ABA 受容体遺伝子が 14 種類も重複しているが、そのうち主に PYL8 受容体が根 の伸長阻害に関わる(Antoni et al. 2013)。pyl8 変異株は他の ABA 受容体が機能してい ても、ABA による主根の伸長阻害が緩和される(Antoni et al. 2013)。興味深いことに PYL8 受容体は他の ABA 受容体とは異なり, ABA によって受容体タンパク質が安定化 し, 核内に蓄積する(Belda-Palazon et al. 2018)。PYL8 による ABA シグナル因子群の活 性化によって主根の成長阻害を引き起こすと考えられる。また、ABA と側根の関係にお いては、ABA 濃度が高くなると側根の伸長成長が抑制されるが、pyl8 変異株では興味深 いことに側根の伸長阻害がさらに強まる(Zhao et al. 2014)。このことから、PYL8 受容 体と側根成長に関わる因子との相互作用が示唆された。実際に、PYL8 受容体は転写因子 MYB44, MYB73, MYB77 と ABA 非依存的に結合する。MYB77 転写因子は、オーキシ ン応答性 IAA7, IAA17, IAA19, GH3 や PINI 遺伝子などのプロモーターに結合し, これ ら遺伝子の転写を活性化する。この活性化は PYL8 受容体タンパク質と MYB77 転写因子 が共発現することで、オーキシン応答性遺伝子の発現が向上することから、PYL8 受容体 は側根の成長にポジティブに作用する機能を有することが示されている。ただし, pyl8変 異株では IAA の投与によって側根の伸長阻害が緩和する。このことから, MYB77 転写因 子は IAA シグナル伝達経路と PYL8 受容体がそれぞれ独立した形で制御されるものと考 えられている。しかし、開花制御と同じように、根における ABA の濃度変化が起こった 場合に、どのように根の伸長促進と成長阻害の制御機構が切り替わるのかは不明なまま である。

4. ABA による地上部の形態形成 (図3参照)

周囲の環境変化に応じて生じる葉の形態とABAの関わりについては、特に水辺に生息 する植物でその作用機構の解明が進められている。チョウジタデ属アカバナ科の Ludwigia arcuata、オオバコ科アワゴケ属の Callitriche palustris やその他の水草の多くは、 水中では水中葉を形成し、葉が水上にあると陸上葉を形成する(Kuwabara et al. 2003; Koga et al. 2021)。一般的に、水中葉は形態的に細く、全体的に柔らかいのに対して、陸上葉 は葉が丸く、茎が太く、しっかりしている。環境に応じて水中葉と陸上葉が可塑的に形 成される異形葉性は、植物ホルモンの ABA とエチレンが大きく影響している。水中葉の 内生 ABA 量は陸上葉に比べて低い。エチレンは水に溶け難いため、水中で形成される水 中葉ではエチレン内生量が高く維持され、水上ではエチレンが大気中に容易に拡散する ため、陸上葉ではエチレン内生量が低い。水中に ABA やエチレン作用阻害剤を与えて生 育させると、水中であっても陸上葉が形成される(Kuwabara et al. 2003; Koga et al. 2021)。 つまり、陸上葉の形成にはエチレン作用の減衰、あるいは ABA 作用が強くなることが必 要である。一方で、水中葉の形成には植物種によって制御が異なることが示されている。 Ludwigia arcuata はエチレンの投与によって、陸上でも水中葉を形成させることができる

(Kuwabara et al. 2003)。これに対して, *Callitriche palustris L*.ではエチレンや GA の複合 処理によっても水中葉が形成されることがないため, さらにほかの制御因子が必要であ ることが示唆されている(Koga et al. 2021)。陸上葉では, ABA や他の植物ホルモンが 相互作用して, 葉の形態や気孔分化に関係する様々な因子がトランスクリプトーム解析 から見出されているが, どのようなシグナル伝達経路を介して制御されているのかは明 確ではない。

浮きイネやタデ科スイバ属の Rumex palustris は、大雨や洪水などによって植物が冠水 すると、水中での嫌気環境を回避するために器官の一部を伸長させる(Kende et al. 1998; Voesenek et al. 1997)。この時に相互作用するのも、エチレンと ABA である。水の中で はエチレンは拡散しにくいために、エチレンが植物体内にとどまり濃度が高くなる。そ の結果、ABA が減少して、GA の内生量が増加することで、浮きイネではシュートが伸 長し(Kende et al. 1998), Rumex palustris では葉柄が伸長する(Benschop et al. 2005)。

図 3. ABA による地上部の形態形成

図 4. ABA と色素蓄積

M. Okamoto - 4

これら両者では、冠水中でも ABA を投与することで器官の伸長が抑制されること や、陸上でもエチレンを投与することで、内生 ABA 量が減少し、器官の伸長が起こる ことから、双子葉植物と単子葉植物という異なる植物種でも冠水応答で利用されるホル モンは類似している。特に、エチレンに応答して内生 ABA 量が減少する際には、ABA を 不活性化する鍵酵素遺伝子(*CYP707A*)の発現が顕著に上昇することから、エチレンの下 流シグナル転写因子が *CYP707A* 遺伝子の発現を制御していると思われる(Saika et al. 2007)。このように環境変化に応じて ABA 量が変化し、他のホルモンとの相互作用によ って可塑的に形質を変化させる機能がある。

5. ABAと色素蓄積(図4参照)

イチゴ,ブドウ,リンゴなど多くの果物で,ABA が果皮のアントシアニン蓄積や果実 の成熟に関与ことが報告されている(An et al. 2018; Chai et al. 2011; Peppi et al. 2006)。 植物がアントシアニンを蓄積する生理的意義は、紫外線をクエンチングする働きや環境 ストレスの際に発生する活性酸素に対するスカンベンジャー作用を有することで、細胞 を保護することである。一方で、園芸的な側面からは、果物の鮮やかな色彩は、品質指標 の一部として重要であり、果物の価格に影響する。ブドウでは、果実成熟の際に、内生 ABA 量が急激に増加し,この増加に伴い果皮のアントシアニン蓄積に加えて,糖の蓄積, 有機酸の低下,果物の軟化も起こる(Kuhn et al. 2014)。また,果実成熟の際に,外から ABA を投与することでも、果皮のアントシアニン蓄積を促進することができるが、単独 投与よりも複数回投与で効果が高い(Koyama et al. 2018)。イチゴでは、ABA 受容体を 可食部の花託で部分的にジーンサイレンシングを起こすことで、その部位のアントシア ニン蓄積が抑制されることから、アントシアニンの蓄積は ABA 受容体を介して引き起こ される事が示されている(Chai et al. 2011)。ABA 受容体以降のシグナル経路を介して, ABA はアントシアニン生合成の鍵転写因子である MYB 転写因子の遺伝子発現を増加さ せる。そして MYB 転写因子の発現増加に伴い、フェニルアラニンアンモニアリアーゼ (PAL) 遺伝子, カルコンシンターゼ (CHS) 遺伝子, フラバノン-3-ジオキシゲナーゼ (F3H) 遺伝子, ジヒドロフラボノール還元酵素 (DFR) 遺伝子とその下流アントシアニ ン生合成酵素遺伝子群の発現誘導が起きる(Koyama et al. 2010; Koyama et al. 2018)。し かしながら、果皮におけるアントシアニンの蓄積誘導には紫外線が必須である。紫外線 の UVB が UVR8 受容体を介して MYB 転写因子を活性化させ、アントシアニン生合成酵 素遺伝子郡の発現が高まり、アントシアニンの蓄積が起こる(Zoratti et al. 2014)。ABA が UVB シグナル伝達経路によって誘導されるアントシアニン生合成の制御機構とどの ように関わっているのか、その詳細な分子機構の解明が期待される。

6. おわりに

これまで, ABA 生理作用の理解には, 遺伝学的な材料が利用できる植物を中心に精力 的に行われてきた。次世代シーケンスの出現により, 非モデル植物でも分子レベルの解 析が展開できるようになり,研究対象の植物が変わるだけで思いがけない ABA の働きを 知ることができる。今回は紹介しなかったが,アフリカで甚大な農業被害をもたらす根 寄生雑草のストライガは,乾燥地にもかかわらず ABA の生理機能を低下させている。 ABA の感受性を低下させることで,自身の蒸散量が盛んになり,その結果,宿主の根に おける連結部を介して水の流れを自身に傾かせる。こうして,ストライガは乾燥条件で 宿主から養水分を効率的に奪取する生存戦略を取っている(Fujioka et al. 2019)。このよ うに,今後は,多様な植物がもつユニークな ABA 生理作用の理解が進むのかもしれない。 しかしながら,非モデル植物は依然として,遺伝子ノックアウトや遺伝子過剰発現株な どの研究材料を容易に用いることはできない。非モデル植物の遺伝子機能を明らかにす るために,モデル植物のシロイヌナズナやイネを利用する事はこれまでも行われてきた が,例えば ABA の作用を打ち消す分子ツールである ABA アンタゴニストや ABA 生合 成阻害剤などを分子生物学的解析と併用することで(Dejonghe et al. 2018),分子遺伝学 でカバーしきれない部分を補い,新たな ABA の生理作用の発見や分子制御機構を明らか にすることができるだろう。

引用文献

浅見忠男, 柿本辰男 (2016) 新しい植物ホルモンの科学 第3版. ISBN 978-4-06-153452-0

- An JP, Yao JF, Xu RR, You CX, Wang XF, Hao YJ. (2018) Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation. Plant Cell Environ 41:2678-2692. doi: 10.1111/pce.13393
- Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Pizzio GA, Fernandez MA, De Winne N, De Jaeger G, Dietrich D, Bennett MJ, Rodriguez PL. (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:931-941. doi: 10.1104/pp.112.208678
- Belda-Palazon B, Gonzalez-Garcia MP, Lozano-Juste J, Coego A, Antoni R, Julian J, Peirats-Llobet M, Rodriguez L, Berbel A, Dietrich D, Fernandez MA, Madueno F, Bennett MJ, Rodriguez PL. (2018) PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization-based mechanisms. Proc Natl Acad Sci USA 115:e11857-11863. doi: 10.1073/pnas.1815410115
- Benschop JJ, Jackson MB, Guhl K, Vreeburg RA, Croker SJ, Peeters AJ, Voesenek LA. (2005) Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant J 44:756-768. doi: 10.1111/j.1365-313X.2005.02563.x.
- Chai YM, Jia HF, Li CL, Dong QH, Shen YY. (2011) FaPYR1 is involved in strawberry fruit ripening. J Exp Bot 62:5079-5089. doi: 10.1093/jxb/err207
- Dejonghe W, Okamoto M, Cutler SR. (2018) Small Molecule Probes of ABA Biosynthesis and Signaling. Plant Cell Physiol 59:1490-1499. doi: 10.1093/pcp/pcy126
- Foyer CH, Kerchev PI, Hancock RD. (2012) The ABA-INSENSITIVE-4 (ABI4) transcription

factor links redox, hormone and sugar signaling pathways. Plant Signal Behav 7:276-281. doi: 10.4161/psb.18770

- Fujioka H, Samejima H, Suzuki H, Mizutani M, Okamoto M, Sugimoto Y. (2019) Aberrant protein phosphatase 2C leads to abscisic acid insensitivity and high transpiration in parasitic Striga. Nat Plants 5:258-262. doi: 10.1038/s41477-019-0362-7
- Hwang K, Susila H, Nasim Z, Jung JY, Ahn JH. (2019) Arabidopsis ABF3 and ABF4 Transcription Factors Act with the NF-YC Complex to Regulate SOC1 Expression and Mediate Drought-Accelerated Flowering. Mol Plant 12:489-505. doi: 10.1016/j.molp.2019.01.002
- Kende H, van der Knaap E, Cho HT. (1998) Deepwater rice: A model plant to study stem elongation. Plant Physiol 118:1105-1110. doi: 10.1104/pp.118.4.1105
- Koga H, Kojima M, Takebayashi Y, Sakakibara H, Tsukaya H. (2021) Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche palustris L. Plant Cell 33:3272-3292. doi: 10.1093/plcell/koab192
- Koyama K, Sadamatsu K, Goto-Yamamoto N. (2010) Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomics 10:367-381. doi: 10.1007/s10142-009-0145-8
- Koyama R, Roberto SR, de Souza RT, Borges WFS, Anderson M, Waterhouse AL, Cantu D, Fidelibus MW, Blanco-Ulate B. (2018) Exogenous Abscisic Acid Promotes Anthocyanin Biosynthesis and Increased Expression of Flavonoid Synthesis Genes in Vitis vinifera x Vitis labrusca Table Grapes in a Subtropical Region. Front Plant Sci 9:323. doi: 10.3389/fpls.2018.00323
- Kuhn N, Guan L, Dai ZW, Wu BH, Lauvergeat V, Gomes E, Li SH, Godoy F, Arce-Johnson P, Delrot S. (2014) Berry ripening: recently heard through the grapevine. J Exp Bot 65:4543-4559. doi: 10.1093/jxb/ert395
- Kurup S, Jones HD, Holdsworth MJ. (2000) Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J 21:143-155. doi: 10.1046/j.1365-313x.2000.00663.x
- Kuwabara A, Ikegami K, Koshiba T, Nagata T. (2003) Effects of ethylene and abscisic acid upon heterophylly in Ludwigia arcuata (Onagraceae). Planta 217:880-887. doi: 10.1007/s00425-003-1062-z
- Marion-Poll A, Seo M (2019) Abscisic Acid in Plants. Academic Press. ISBN 0081026218
- Martignago D, Siemiatkowska B, Lombardi A, Conti L. (2020) Abscisic Acid and Flowering Regulation: Many Targets, Different Places. Int J Mol Sci 21. doi: 10.3390/ijms21249700
- McAdam SA, Brodribb TJ, Ross JJ. (2016) Shoot-derived abscisic acid promotes root growth. Plant Cell Environ 39:652-659. doi: 10.1111/pce.12669
- Miao R, Yuan W, Wang Y, Garcia-Maquilon I, Dang X, Li Y, Zhang J, Zhu Y, Rodriguez PL, XuW. (2021) Low ABA concentration promotes root growth and hydrotropism through relief of

ABA INSENSITIVE 1-mediated inhibition of plasma membrane H(+)-ATPase 2. Sci Adv e7. doi: 10.1126/sciadv.abd4113

- Peppi MC, Fidelibus MW, Dokoozlian N. (2006) Abscisic Acid Application Timing and Concentration Affect Firmness, Pigmentation, and Color ofFlame Seedless' Grapes. HortScience 41:1440-1445. doi: 10.21273/HORTSCI.41.6.1440
- Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L. (2016) ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J Exp Bot 67:6309-6322. doi: 10.1093/jxb/erw384
- Saab IN, Sharp RE, Pritchard J, Voetberg GS. (1990) Increased endogenous abscisic Acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol 93:1329-1336. doi: 10.1104/pp.93.4.1329
- Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M et al. (2007) Ethylene promotes submergence-induced expression of OsABA80x1, a gene that encodes ABA 8'-hydroxylase in rice. Plant Cell Physiol 48:287-298. doi: 10.1093/pcp/pcm003
- Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, Tang S, Yang W, Xie Q. (2016) ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. J Exp Bot 67:195-205. doi: 10.1093/jxb/erv459
- Shu K, Luo X, Meng Y, Yang W. (2018) Toward a Molecular Understanding of Abscisic Acid Actions in Floral Transition. Plant Cell Physiol 59:215-221. doi: 10.1093/pcp/pcy007
- Spollen WG, LeNoble ME, Samuels TD, Bernstein N, Sharp RE. (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol 122:967-976. doi: 10.1104/pp.122.3.967
- Voesenek L, Vriezen WH, Smekens M, Huitink F, Bogemann GM, Blom C. (1997) Ethylene Sensitivity and Response Sensor Expression in Petioles of Rumex Species at Low O2 and High CO2 Concentrations. Plant Physiol 114:1501-1509. doi: 10.1104/pp.114.4.1501
- Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y. (2013) The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot 64:675-684. doi: 10.1093/jxb/ers361
- Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672-685. doi: 10.1111/j.1365-313X.2009.04092.x
- Zhang D-P (2014) Abscisic acid: metabolism, transport and signaling. Springer. ISBN 9401794243. ISBN: 9401794243
- Zhang X, Garreton V, Chua NH. (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19:1532-1543. doi:

M. Okamoto - 8

10.1101/gad.1318705

- Zhao Y, Xing L, Wang X, Hou YJ, Gao J, Wang P, Duan CG, Zhu X, Zhu JK. (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:ra53. doi: 10.1126/scisignal.2005051
- Zoratti L, Karppinen K, Luengo Escobar A, Haggman H, Jaakola L. (2014) Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci 5:534. doi: 10.3389/fpls.2014.00534

構造解析から明らかとなったジベレリン及びオーキシン不活性化酵素の
 素の
 共通した代謝メカニズム

竹原 清日

名古屋大学 生物機能開発利用研究センター 〒464-8601 名古屋市千種区不老町

Common Metabolic Mechanisms of Gibberellin and Auxin Inactivating Enzymes Revealed by Structural Analysis

Sayaka Takehara

Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan

Keywords: auxin, gibberellin, plant hormone

DOI: 10.24480/bsj-review.13b3.00226

1. はじめに

環境に応じて動くことができない植物にとって、"成長するのか,もしくはそれを止めるの か"という問題は非常に重要である。植物は成長に適した条件(光,温度,水,養分など) を必要とし、それがなければ成長を止める必要があるからだ。特に大気や土壌の栄養条件や 病害や乾燥や光などのストレスに曝露された際,植物は生存のためにさまざまな戦略をとっ ている。なかでも、一連につながった生合成・代謝経路を制御することは重要で、これによ り恒常性と生命の維持を行っている。実際,植物成長ホルモンであるジベレリン (GA) やオ ーキシン (IAA) 量は、生合成および代謝酵素の協調的な転写調節による負のフィードバッ クまたは正のフィードフォワード機構により一定範囲内に維持されている (Thomas et al. 1999; Yamaguchi 2008)。しかし、タンパク質レベルにおける制御機構に関しては不明な点 が多い。最近我々は、イネにおいて GA および IAA 代謝酵素が基質レベルに応じてタンパク 質の立体変化を起こし、酵素活性を高めることによって植物ホルモンの恒常性を維持する共 通のシステムが存在することを示した。このことは、モノーが提唱したアロステリック制御 が植物ホルモンの代謝系に働いていること、さらにその分子メカニズムを新たに提示できた ことを意味する。本稿では、これらGAに関する制御を中心に、植物ホルモンの代謝酵素の新 たな活性調節機構について、筆者らの最新の知見を織り交ぜながら解説する。

2. ジベレリンとその受容

ジベレリン(GA)は種子発芽,器官の伸長,花芽形成,果実の発達など,植物の多様なプロ セスを促進する植物ホルモンの一つである(Thomas et al. 1999)。*ent*-ジベレラン骨格を持つ ジテルペン化合物で,130種類を超える化合物が同定されている非常に大きなグループを形 成し,図1に示すように, 炭素数20の分子群(C20-GA)と,炭素を1つ失い ラクトン環を1つ持つ分 子群(C19-GA)の2種類 が存在する。植物中で生 理活性を示すのはC19-GA グループに属し,3β位に 水酸基を有するごく一部 の形態(GA₁,GA₃,GA₄, GA₇)に限られ(図1)

(Bömke and Tudzynski
2009; Hedden and Sponsel
2015), その他は前駆体や
代謝物質として存在す
る。GAの研究は, 1900年
代初頭の日本において, イ
ネの過剰成長や不稔など
の病気がカビの感染によ
るものであったことに端

(A) 活性型GAの構造。その特徴は、①6位炭素にカルボン酸がついていること、②3
 位炭素に水酸基がついていること、③γ-ラクトン環があること、④2位炭素に水酸基がついていないことなどが知られている。
 (B) 植物におけるGA生合成の最終段階及び代謝経路。

を発する。その後,この病気は馬鹿苗病と呼ばれる Gibberella fujikuroi(現在は Fusarium fujikuroi に分類)の分泌物によるものであることが明らかとなり、そこから活性成分である "ジベレリン"という名前が付けられた(Kurosawa 1926; Yabuta and Sumiki 1938; Takahashi et al. 1955; MacMillan and Suter 1958)。2005年には GA に対して非感受性の矮性変異(植物の 丈が低くなる変異)を起こしたイネの原因遺伝子 gibberellin insensitive dwarf1 (GID1) が単 離され、この遺伝子の作るタンパク質 GID1 こそが GA 分子の受容体(核内受容体)であるこ とが明らかとなった(Ueguchi-Tanaka et al. 2005)。通常 GID1 が GA を核内で受容すると, GID1とGAシグナル伝達の抑制因子であるDELLAタンパク質との相互作用が高まり、ユビ キチン/プロテアソーム経路を介して DELLA タンパク質が急速に分解されることにより DELLA が抑制していた GA の作用が顕在化するというものである (Griffiths et al. 2006; Ueguchi-Tanaka et al. 2007)。ついで 2008 年に X 線結晶構造解析により GID1 の立体構造が 明らかになった(Shimada et al. 2008; Murase et al. 2008)。GID1 受容体の全体構造は、ホルモ ン感受性リパーゼ(HSLファミリータンパク質) (Ileperuma et al. 2007) とまったく同じ骨 格の構造(α/β水解酵素型構造)をしていたが,GA 結合部位はリパーゼの活性部位である Ser, His, Asp のうち His が Val へと置換されることによって GA の認識に寄与していた。ま た, GID1 による GA の認識は,活性型 GA の特徴である C6 位のカルボキシ基と C3 位の水酸 基との親水性のネットワークや、ジベレラン骨格などを認識する疎水性相互作用など数多く の結合による事も明らかとなった。

3. GA の生合成と代謝

3-1. GA 生合成酵素

栄養生長期の葉や茎における GA 内生量は、グラム新鮮重量あたり数 pmol 程度(Hirano et al. 2008) とごく微量でありながら植物に多大な影響を与えていることから, 植物体内での生 合成は非常に厳密に調節されていると予想される。一般的には GA 生合成経路の後半段階で GA 20-oxidase (GA20ox) および GA 3-oxidase (GA3ox) が働き、これら全ての酵素は 2-オキ ソグルタル酸依存性酸化酵素(2ODD)(Yamaguchi 2008; Mitchum et al. 2006; Sun 2008)に属 する。GA20ox は GA9 と GA20 を生成し、その後、GA3ox が GA 生合成の最終段階を触媒してそ れぞれ GA4および GA1に変換する。生合成の最終段階を担う GA3ox は小さなファミリーと して存在しており、シロイヌナズナには4つ、イネとオオムギには2つのメンバーがあるだけ である。シロイヌナズナでは AtGA3ox1 と AtGA3ox2の2つの酵素が、イネでは OsGA3ox2の 1つだけが器官の発達に主要な役割を果たしている。OsGA3ox2遺伝子の機能欠損変異体であ る d18-AD (Akibare waisei), d18-Id18^h (housetsu waisei), d18-dy (Waito-C) は, 活性型 GA である GA1レベルの低下により深刻な矮性の形質を示し、その発現も活性型 GA によってフィードバ ック制御されていることから、この酵素が触媒するステップは活性型GAレベルを制御するた めの重要なステップであることを明確に示している(Itoh et al. 2001)。また, イネのもう一 つの酵素 OsGA3ox1 は葯で特異的に発現し、最近花粉の発達に寄与していることが明らかと なった(Kawai et al. 2022)。興味深いことに, OsGA3ox1 は活性型 GA によるフィードバック 制御を受けない(Itoh et al. 2001)。

3-2. GA 代謝酵素

GAのホメオスタシスは,植物の適切な成長と発達に不可欠であるため,GAの生合成と代謝 の両方により厳密に制御されている。生合成の進化とともに、代謝に関しても活性型GAのレ ベルを低下させるいくつかのメカニズムが進化してきた(Varbanova et al. 2007; Gao et al. 2016)。GAの代謝・不活性化過程として、2位の水酸化や6位カルボキシル基に対するメチ ルエステル化, 16, 17 位へのエポキシ化, 13 位水酸化など多くの不活性化反応が報告されてい るが, このうち代表的な GA 代謝は 2-oxidase (GA2ox)と呼ばれる 20DD が触媒するプロセス で,活性型 GA を 2β-ヒドロキシル化によって不活性化する(Sakamoto et al. 2004)。この酵素 は、基質によって大きく2つのグループに分けられ、生理活性のあるC19-GAとその直前の前 駆体を不活性型に変換する C19-GA2ox (Thomas et al. 1999; Hedden and Thomas 2012) と, C20 型の前駆体 GA (GA₁₂や GA₅₃など) に作用する C20-GA2ox (Schomburg et al. 2003; Hedden and Thomas 2012) である。シロイヌナズナでは 5 つの C19-GA2ox (AtGA2ox1, AtGA2ox2, AtGA2ox3, AtGA2ox4, AtGA2ox6) と2つのC20-GA2ox (AtGA2ox7, AtGA2ox8) が確認されて おり (Rieu et al. 2008), イネでは7つの C19-GA2ox 遺伝子 (OsGA2ox1, OsGA2ox2, OsGA2ox3, OsGA2ox4, OsGA2ox7, OsGA2ox8, OsGA2ox10) と 3 つの C20-GA2ox (OsGA2ox5, OsGA2ox6, OsGA2ox9) が同定されている (Lo et al. 2008)。C19-GA2ox は裸子植物と被子植物の分岐前に, C20-GA2ox は初期の被子植物に出現し(Yoshida et al. 2020), GA2ox ファミリーは一気に拡 大して組織・器官レベルでの遺伝子発現の特異性やストレスへの応答(Colebrook et al. 2014)

が可能になった。C19およびC20-GA2oxのコピー数が被子植物で急速に増加していることは、 この GA 不活性化のネットワークシステムが被子植物の進化にとって重要であるということ を示唆している。それと同時に、GA20oxやGA3oxなどのGA 合成酵素のコピー数も急速に増 加し、結果的に被子植物は活性 GA のレベルを絶妙にコントロールする高度なシステムを手に 入れたと考えられる。

GA2ox 遺伝子の発現レベルは,環境変化や植物ホルモンに応じて変化する。イネでは低温 の場合, GA2ox 遺伝子の転写を活性化することで GA の不活性化を促進し,種子の発芽を抑制 する(Wang et al. 2018)。シロイヌナズナの GA2ox7は,塩濃度が高い場合発現が上昇し,活 性 GA のレベルが低下する(Magome et al. 2008)。また, GA 代謝酵素は外部からの GA3 処理 によって有意に発現が上昇する一方,生合成酵素の発現は GA によって低下し, GA 生合成阻 害剤であるウニコナゾールによって上昇する事が知られており(Thomas et al. 1999),植物は GA のレベルを負のフィードバックまたは正のフィードフォワード機構により厳密に制御し, 様々な環境条件への適応をはかっている。しかし最近,我々のグループはイネの C19 型の OsGA2ox3 の X 線結晶構造を決定し,タンパクレベルでも GA の恒常性を維持するためのア ロステリックなフィードフォワード機構がある事を見出したので4項で紹介する。

3-3. GA 受容生合成酵素と代謝酵素の構造と進化

GID1の構造解析結果から,真性シダ以降 GID1 受容体の GA 選択性が進化の中で良く保存

されていることがわかってきた(Ueguchi-Tanaka et al. 2010; Tanaka et al. 2014)。そのため、 GA応答の多様性をシグナル伝達だけで説明す ることが難しいことも示していた。では、植物は どのようにして GA 応答の多様性を生み出して きたのだろうか。GA3ox はシダ植物の時代に、 C19-GA2ox は裸子植物と被子植物の分岐前に、 C20-GA2ox は被子植物の初期に、それぞれ異な るグループとして独立に誕生した(Takehara et al. 2020; Yoshida et al. 2020)。このことから、 GID1-GA-DELLA システムがシダの時代に確立 された以降も、生合成と代謝系が競い合うように 複雑・多様化したことが示唆される。最近,我々 のグループはイネのGA生合成酵素OsGA3ox2 ならびに代謝酵素 OsGA2ox3 について、初めて X 線結晶構造解析に成功した (Takehara et al. 2020;

図2 GA生合成及び代謝酵素の構造比較 (A) OsGA2ox3とOsGA3ox2の全体構造。 (B) 活性中心の構造比較。

Kawai et al. 2022。全体構造は両酵素で似ていたが, OsGA3ox2 は単量体であったのに対して, OsGA2ox3 は 4 量体を形成していた(図 2A)。また,活性中心の構造に着目すると,補基質で ある 2-オキソグルタル酸と結合するアミノ酸は良く保存されていたが,興味深いことに,基質 である GA (GA3ox2 の場合 GA₉, GA2ox3 の場合 GA₄)は上下反対向きに結合しており,そ れぞれ全く異なるわずか数個のアミノ酸が結合している事が分かった(図2B)。一方, GID1 受容体の GA 認識には, 受容体–リガンド結合ポケット周りの 20 個ほどの数多くのアミノ酸 が関わっている (Shimada et al. 2008; Yoshida et al. 2018)。GA 応答の多様性に関してこれらの ことを考え合わせると, GID1 受容体に比べ GA3ox や GA2ox の基質認識部位における変化に よって対応するほうがはるかに易しいという, 今までの進化の知見に沿った結果であった。

4. 植物ホルモン代謝酵素による活性調節機構

最近筆者らは、まだ不明な点が多い植物ホルモン代謝酵素の翻訳後調節について、そのアロ ステリック制御と恒常性の観点から研究を行った。イネの GA 代謝酵素の中でも茎で主に発 現する OsGA2ox3 を用いて X 線結晶構造解析を行なった結果、前述のように全体構造は 4 量 体を形成しており、基質である GA4 がサブユニット分子界面で架橋することにより多量体を 形成していることが明らかとなった(Takehara et al. 2020)。さらに、この基質を介した多量 体化は基質濃度の増加とともに徐々に進行し、それに伴い酵素活性がシグモイダルに上昇し た。この構造変化と活性の増大は、モノーらによって提案されたモデル(Monod et al. 1965) に示されているように、アロステリック制御イベントの典型的なものであった。

さらに、代謝酵素の詳細な代謝メカニズムを検討するため、分子動力学 (MD) シミュレー ションによる蛋白質のダイナミクスを解析した。MD シミュレーションは、X線結晶構造解析 だけでは捉える事ができない動的過程を原子・分子の動きをコンピュータの中で再現するこ とができる。最近では、生体試料の構造を三次元でそのまま観察出来るクライオ電子顕微鏡 などによっても、溶液中で動いている生体分子を観察することが可能となってきている。 の MD シミュレーションにより、OsGA2ox3には基質 GA4が活性部位とサブユニット界面を 行き来するルートがあり、活性中心を覆うフタのようなβ-シート(gate と表記)が大きな構

造変化を起こすことを見出した。この gateはGAが活性中心にローディングす るに従って開き,GAが完全に活性中心 に入ると閉じる動きをする事も明らか となった。さらに、この動的なシステム の本質に迫った結果、GA4が低濃度の場 合、酵素はモノマーまたはプロトマー (モノーが定義した用語)として存在 し、定常状態の活性を示している

(Monod et al. 1965)。一方, 基質濃度 が上昇すると, 酵素は基質(エフェクタ 一)の助けを借りて徐々に多量体を形 成し, 活性ポケットの入り口付近に次の 反応に必要な基質を待機させ, gate の開 閉や安定化によって酵素活性が上昇す ることで GA の積極的な代謝が行われ

図3. 基質GA₄やIAAが多くなると多量体を作り代謝活性を上昇させる 機構。多量体になると、分子間にあるGA₄やIAAが次の反応のための 基質として活性ポケットに転がり込むことが可能となり、反応速度論 的に反応性が上昇することが示された。その際、gateと名付けた活性 中心を覆う蓋のような構造が開閉することで、基質(生成物)が出入り することも示唆された。

(Takehara et al. 2020 Nat Commun. を改変)

るという、ホルモンの恒常性を維持するための巧妙なシステムが存在する事が示唆された (図 3)。また、このようなアロステリックな反応性の変化には、C19-GA2ox および C20-GA2ox すべてで保存されている Lys 残基(OsGA2ox3 における K308)が必須であることも明 らかとなり、実際、C20-GA2ox である OsGA2ox6 について調べても GA 依存的な多量体形成を 示した。

さらに,同じ 2ODD グループであるオーキシン不活性化酵素 OsDAO に着目した。細胞内の オーキシンの濃度はGAと同様に生合成や代謝が協調して行われ,厳密に制御されている。こ の OsDAO は、OsGA2ox3 において活性上昇に寄与する K308 にあたるアミノ酸が同じ塩基性 アミノ酸 Arg である事から, まず, GA 代謝酵素と同様の代謝メカニズムがあるのかどうかを 調べるためX線結晶構造解析を行った。その結果,OsDAOは基質である IAA がサブユニット 分子界面で架橋することにより2量体を形成している事を見出した。驚くべき事に OsGA2ox3 と同様に基質レベルに基づいて単量体-多量体スイッチングが起こり,その立体構 造変化が活性上昇を引き起こしたことから、これらの代謝酵素には植物ホルモンの恒常性を 維持する共通のシステムが存在することが示唆された。また、この DAO について Zhang らは、 AtDAO1 (シロイヌナズナの DAO の一つ) による IAA の不活性化は, IAA にアミノ酸を結合 させて不活性化体に変換する酵素である GH3.6 よりも 10,000 倍以上低いことを報告している (Zhang and Peer 2017)。実際我々の結果は、高濃度の IAA の下において、OsDAO の二量体での 活性が GH3.6の4分の1程度であった。これは, DAOによる IAA 不活性化システムの生物学 的な意味合いについて、さらなる洞察を与えてくれた。つまり、GH3 遺伝子は、植物が被るさ まざまな環境変化に対する緊急応答システムとして機能し、外因性の IAA や環境刺激に応答 するために最も早く反応する(Zhang and Peer 2017; Mellor et al. 2016)一方, DAO による不活 性化システムは、主に内在的な生物学的イベントに関与している可能性があり、基質のレベル に応じて分子内のメカニズムによって活性を調節することができることを示唆している。し たがって,DAOは非常にゆっくりとした速度で,IAA量を調節しているように思われる。この ような効果的な二重の不活性化システムは、連続的に変動する多様な環境条件にさらされる 植物にとって, 重要であると考えられる。興味深いことに, このような二重の不活性化システ ムは GA による制御においては観察されず, GA が制御する生物学的事象には迅速な不活性化 が必須ではない可能性が示唆された。

5. おわりに

GA の生合成と代謝との関係や受容体は, 発生や環境に応じて GA 濃度を調節するメカニズ ムを考察する上で大きな関連性がある。今回明らかとなった GA ならびにオーキシン代謝酵 素によるタンパク質レベルでの巧みな恒常性を維持するシステムが, 被子植物の発生過程に おいて同じメカニズムで作られたことは, これらの成長ホルモンを効果的に制御することが 植物の様々な環境条件への適応に重要であることを示唆している。その結果として, このエ レガントなシステムは間違いなく植物の生存を助け, 変動する厳しい環境に対してより良い 適応能をもたらしたといえる。しかし, 植物ホルモンレベルを制御する分子機構は, 様々なフ ィードバック及びフィードフォワード機構を含む複雑な制御ネットワークによるため, 未だ 不明な点も多い。今後,植物ホルモンの生合成,代謝,さらにはその局在化と移動などを合わ せて理解する事で植物ホルモン制御の解明につながることが期待される。

謝辞

本稿で紹介した研究成果は、名古屋大学の上ロ(田中)美弥子教授のご指導のもと、量子科 学技術研究開発機構の桜庭俊研究員、京都大学生存圏研究所森林代謝機能化学研究分野の三 上文三特任教授との共同研究により行ったものである。また、これらの研究は、新学術領域 研究(16H06464, 16H06468)、科研費(16H0490)の支援を受けて実施した。

引用文献

- Bömke C, Tudzynski B. (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70: 1876-93. doi: 10.1016/j.phytochem.2009.05.020.
- Colebrook EH, Thomas SG, Phillips AL, Hedden P. (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217: 67-75. doi: 10.1242/jeb.089938.
- Gao S, Fang J, Xu F, Wang W, Chu C. (2016) Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. Plant Cell 28: 680–695. doi: 10.1105/tpc.15.01021.
- Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL,
 Hedden P, Sun TP et. al. (2006) Genetic characterization and functional analysis of the
 GID1 gibberellin receptors in Arabidopsis. Plant Cell 18: 3399-414. doi: 10.1105/tpc.106.047415.
- Hedden P, Sponsel V. (2015) A Century of Gibberellin Research. J Plant Growth Regul 34: 740-60. doi: 10.1007/s00344-015-9546-1.
- Hedden P, Thomas SG. (2012) Gibberellin biosynthesis and its regulation. Biochem J 15: 11-25. doi: 10.1042/BJ20120245.
- Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim RA, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M. (2008) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol 49: 1429-50. doi: 10.1093/pcp/pcn123.
- Ileperuma NR, Marshall SD, Squire CJ, Baker HM, Oakeshott JG, Russell RJ, Plummer KM, Newcomband RD, Baker EN. (2007) High-resolution crystal structure of plant carboxylesterase AeCXE1, from Actinidia eriantha, and its complex with a high-affinity inhibitor paraoxon. Biochemistry 46: 1851-1859. doi: 10.1021/bi062046w.
- Itoh H, Ueguchi-Tanaka, M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. (2001) Cloning and functional analysis of two gibberellin 3 beta -hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci U S A 98: 8909-8914. doi: 10.1073/pnas.141239398.
- Kawai K, Takehara S, Kashio T, Morii M, Sugihara A, Yoshimura H, Ito A, Hattori M, Toda Y,
 Kojima M et al. (2022) Evolutionary alterations in gene expression and enzymatic activities of
 gibberellin 3-oxidase 1 in *Oryza*. Commun Biol 5: 67. doi:10.1038/s42003-022-03008-5.

- Kurosawa E. (1926) Experimental studies on the nature of the substance excreted by the 'bakanae' fungus. Trans Nat Hist Soc Formos 16: 213–227.
- Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JA, Chen LJ, Yu SM. (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20: 2603-18. doi: 10.1105/tpc.108.060913.
- MacMillan J, Suter PJ. (1958) The occurrence of gibberellin A₁ in higher plants—isolation from the seed of runner bean (*Phaseolus multiflorus*). Naturwissenschaften 45: 46.
- Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA20x7, under high-salinity stress in Arabidopsis. Plant J 56: 613-26. doi: 10.1111/j.1365-313X.2008.03627.x.
- Mellor N, Mellor N, Band LR, Pěnčík A, Novák O, Rashed A, Holman T, Wilson MH, Voß U,
 Bishopp A et al. (2016) Dynamic regulation of auxin oxidase and conjugating enzymes
 AtDAO1and GH3 modulates auxin homeostasis. Proc Natl Acad Sci USA 113: 11022–11027. doi: 10.1073/pnas.1604458113.
- Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun TP. (2006) Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J 45: 804-18. doi: 10.1111/j.1365-313X.2005.02642.x.
- Monod J, Wyman J, Changeux JP. (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12: 88–118.
- Murase K, Hirano Y, Sun T-p, Hakoshima T. (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456: 459–463. doi: 10.1038/nature07519.
- Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P et al. (2008) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20: 2420-36. doi: 10.1105/tpc.108.058818.
- Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K et al. (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134: 1642-53. doi: 10.1104/pp.103.033696.
- Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM. (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15: 151-63. doi: 10.1105/tpc.005975.
- Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M. (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456: 520-523. doi: 10.1038/nature07546.
- Sun TP. (2008) Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Arabidopsis Book 6: e0103. doi: 10.1199/tab.0103.
- Takahashi N, Kitamura H, Kawarada A, Seta Y, Takai M, Tamura S, Sumiki Y. (1955) Biochemical studies on "Bakanae" fungus. Part XXXIV. Isolation of gibberellins and their properties. Bull Agric Chem Soc Jpn 19: 267–277.

- Takehara S, Sakuraba S, Mikami B, Yoshida H, Yoshimura H, Itoh A, Endo M, Watanabe N, Nagae T, Matsuoka M et al. (2020) A common allosteric mechanism regulates homeostatic inactivation of auxin and gibberellin. Nat Commun 11: 2143. doi: 10.1038/s41467-020-16068-0.
- Tanaka J, Yano K, Aya K, Hirano K, Takehara S, Koketsu E, Ordonio RL, Park SH, Nakajima M, Ueguchi-Tanaka M et al. (2014) Antheridiogen determines sex in ferns via a spatiotemporally split gibberellin synthesis pathway. Science 346: 469-73. doi: 10.1126/science.1259923.
- Thomas SG, Phillips AL, Hedden P. (1999) Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96: 4698–4703. doi: 10.1073/pnas.96.8.4698.
- Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I et al. (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437: 693-698. doi: 10.1038/nature04028.
- Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I et. al. (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19: 2140-2155. doi: 10.1105/tpc.106.043729.
- Ueguchi-Tanaka M, Matsuoka M. (2010) The perception of gibberellins: clues from receptor structure. Curr Opin Plant Biol 13: 503-8. doi: 10.1016/j.pbi.2010.08.004.
- Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D et al. (2007) Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19: 32-45. doi: 10.1105/tpc.106.044602.
- Wang Y, Cui Y, Hu G, Wang X, Chen H, Shi Q, Xiang J, Zhang Y, Zhu D, Zhang Y. (2018) Reduced bioactive gibberellin content in rice seeds under low temperature leads to decreased sugar consumption and low seed germination rates. Physiol Biochem 133: 1-10. doi: 10.1016/j.plaphy.2018.10.020.
- Yabuta T, Sumiki T. (1938) Communication to the editor. J Agric Chem Soc Japan 14: 1526.
- Yamaguchi S. (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59: 225–251. doi: 10.1146/annurev.arplant.59.032607.092804.
- Yamamoto Y, Hirai T, Yamamoto E, Kawamura M, Sato T, Kitano H, Matsuoka M, Ueguchi-Tanaka M. (2010) A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins. Plant Cell 22: 3589-602. doi: 10.1105/tpc.110.074542.
- Yoshida H, Tanimoto E, Hirai T, Miyanoiri Y, Mitani R, Kawamura M, Takeda M, Takehara S, Hirano K, Kainosho M et al. (2018) Evolution and diversification of the plant gibberellin receptor GID1. Proc Natl Acad Sci USA 115: E7844-E7853. doi: 10.1073/pnas.1806040115.
- Yoshida H, Takehara S, Mori M, Ordonio RL, Matsuoka M. (2020) Evolution of GA Metabolic Enzymes in Land Plants. Plant Cell Physiol 61: 1919-1934. doi: 10.1093/pcp/pcaa126.
- Zhang J, Peer WA. (2017) Auxin homeostasis: the DAO of catabolism. J Exp Bot 68: 3145–3154. doi: 10.1093/jxb/erx221.

ジャスモン酸関連転写因子活性の化学制御の試み

高岡 洋輔¹,上田 実^{1,2}

¹東北大学大学院理学研究科化学専攻 ²東北大学大学院生命科学研究科 〒980-8578 宮城県仙台市青葉区荒巻字青葉 6-3

Challenges to chemical regulation of jasmonate-related transcription factors

Yousuke Takaoka¹, Minoru Ueda^{1, 2}

¹Department of Chemistry, Graduate School of Science, Tohoku University ²Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University 6-3 Aramaki-Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan

Keywords: Jasmonate, Plant hormone, Protein-protein interaction, Transcription factor

DOI: 10.24480/bsj-review.13b4.00227

1. はじめに

1-1. ジャスモン酸

植物が腐生菌による感染を受けたり害虫にかじられたりすると、植物ホルモンであるジャ スモン酸 (JA) を合成し、様々な防御応答を引き起こす (Wasternack 2007; Wasternack and Hause 2013) 。多くの植物ホルモンにも見られるように、この JA 応答には様々な転写因子が関与し ていることが知られている。ジャスモン酸は最終的に、イソロイシンと縮合されることで生 成するジャスモン酸イソロイシン (JA-Ile) が活性本体として働き(Fonseca et al. 2009)、ユビキ チンリガーゼの構成要素である F-box タンパク質 CORONATINE INSENSITIVE 1 (COI1) と、 転写リプレッサータンパク質である JASMONATE-ZIM-domain (JAZ) との間のタンパク質間 相互作用 (PPI) を誘起することで、JAZ のユビキチン化による 26S プロテアソーム系での分 解を促す。JAZ は定常状態で様々な転写因子を抑制しており、JA-Ile 依存的な JAZ タンパク 質の分解に応じて、これらの転写因子が同時に活性化され、その下流の遺伝子群の発現を促 すとされる (図 1) (Wasternack and Kombrink 2010)。これにより上記の防御応答として、病 原菌や害虫に対する忌避物質である毒性タンパク質の発現や、抗がん活性をもつ様々な二次 代謝産物の生合成を一挙に引き起こす。その一方で、ジャスモン酸は生長抑制作用や老化を 促すことも知られており、このジャスモン酸が引き起こす活性の「生長と防御のトレードオ フ」の関係は、未だその制御メカニズムに不明な点が残されている。

図 1. ジャスモン酸シグナル伝達機構の全体図: JA-Ile が COII-JAZ の PPI を誘起することで JAZ が分解され, JAZ により抑制されていた転写因子が JA 応答遺伝子の転写を促す。

1-2. ジャスモン酸関連転写因子の化学制御

この JA シグナル伝達経路を構成するタンパク質とし て, モデル植物シロイヌナズにおいて COII は 1 種類だ が, JAZ リプレッサーには13 種類のサブタイプが, JAZ と直接相互作用する転写因子にはさらに多くの種類の 遺伝子群がコードされている(図 2)(Chini et al. 2016)。 さらにこれらの転写調節因子 (JAZ リプレッサー及び転 写因子)は、遺伝的重複性が高いだけでなく、各々がク ロストークしたりすることで解析が困難となっている。 このような場合,特定のタンパク質に対する選択的なケ ミカルツールが有効であると考えられる。例えば我々は 最近, 13種の COII-JAZ 共受容体のうち2 種類のサブタ イプ JAZ9 及び 10 に選択的に結合する小分子リガンド を開発した(Takaoka et al. 2018)。この分子は, 生長抑 制作用は弱い一方で,病原菌耐性応答を選択的に誘導す ることが明らかとなった。またこれをケミカルツールと して用いることで、この応答に JAZ9 が関与しているこ となどが示された。JAZ サブタイプは遺伝的重複性が高

図 2. ジャスモン酸シグナルにおけ る JAZ と転写因子の複雑性: シロ イヌナズナでは1種類のSCF^{COII}に 対し,13種類JAZ と複数の転写因 子が複雑にシグナルを制御する。

く, *jaz9* ノックアウト株ではこのような表現型を示さないが、ケミカルツールであれば複数 あるジャスモン酸応答のうち、選択的な応答を引き起こせることを示している。

我々はこのような背景のもと, JA 応答に関わる転写因子の活性化メカニズムの解析(2章), 並びに化学的に JA 関連転写因子を制御する方法論の開発(3章)に着手した。以下に詳細を 述べる。

2. ジャスモン酸関連転写因子の活性化機構の解析

2-1. JA 主要転写因子 MYC の抑制と活性化

再びジャスモン酸シグナル伝達の全体図に話を戻す。近年,複数のグループからジャスモン酸シグナルに関連するタンパク質の構造解析が相次いで報告されている。まず JAZ の C 末端領域に存在する保存度の高い Jas motif が COI1 結合サイトとして同定され、この Jas motif を用いて COI1-JA-Ile との三者複合体の構造解析が達成された(Sheard et al. 2010)。この時、Jas motif の N 末端側はランダムループ構造を形成して JA-Ile と直接相互作用し、C 末端側は α -ヘリックス構造を形成することが明らかとなった(図 3a)。一方 2015 年に発表された JAZ と MYC との結晶構造解析から、JAZ は同じ Jas motif を用いて MYC と結合するが、その構造 は劇的に変化し、Jas motif 全体が α -ヘリックス構造を形成していた(図 3b) (Zhang et al. 2015)。 つまり、定常状態では α -ヘリックス構造によって MYC と結合しその活性を抑制する JAZ が、 ジャスモン酸の生合成によって JA-Ile が産生されると、その結合ドメインの N 末端側の構造 をランダムループ構造に変化させて、COI1-JA-Ile と結合するという興味深い構造スイッチが 起こることが示された。

一方, JA 応答が活性化されると, JAZ10 の Jas motif が一部もしくは完全に欠損したスプ ライスバリアント JAZ10.3, JAZ10.4 が発現するという興味深い現象が報告された。詳細に解 析された結果, JAZ10 には C 末端付近の Jas motif の他に, N 末端領域に MYC と強力に結合 するドメイン: Cryptic MYC-interacting domain (CMID) が存在し, これが転写因子を抑制す る機能があることが明らかとなった (Chung and Howe 2009; Moreno et al. 2013; Zhang et al. 2017)。すなわち, スプライスバリアント JAZ10.4 は, Jas motif を持たないことで JA-Ile 存在 下でもCOII と結合することができず, ユビキチン化とそれに続くタンパク質分解を受けるこ とがないが, MYC を抑制する機能のみを有することになり, これがシグナル活性化状態の後 期で発現してくることで, ジャスモン酸応答を沈静化するとされている。

図 3. JA シグナル伝達における各タンパク質の構造解析結果 (a: JA-Ile 共受容体 COII-JAZ1^{Jas} (PDB ID: 3OGL), b: 転写因子 MYC3 と JAZ9^{Jas} (PDB-ID: 4RS9), c: 転写因子 MYC3 と JAZ10^{CMID} (PDB ID: 5T0F))

Y. Takaoka & M Ueda - 3

2-2. MYC と MED25 間のタンパク質間相互作用解析

JA 応答のうち, 定常状態における転写因子 MYC-JAZ 間のタンパク質間相互作用 (PPI), JA-Ile 産生によって誘導される COI1-JA-Ile-JAZ 三者複合体構造,及び JA 応答の再抑制化に 関わる MYC-CMID 間 PPI については構造が解かれたが、JA 応答の活性化状態については構 造的知見に乏しかった。具体的には、JA-Ile存在下で JAZ が分解されることによって、MYC の空いた結合サイト (JID ドメインと TAD ドメイン) に転写メディエーターである MED25 が結合し、これに続いてヒストンアセチルトランスフェラーゼ (HACI), RNA 合成酵素 (Poll II) などがリクルートされ、転写開始前複合体(transcriptional pre-initiation complex, PIC)と呼 ばれる複合体が形成されることで, MYC 下流遺伝子の発現が引き起こされる(An et al. 2017; Cevik et al. 2012; Zhang et al. 2015)。ここで、MYC と MED25 との結合には MED25 の C 末端 側にある ACID 領域 (activator interaction domain, 551-680 番目のアミノ酸) と呼ばれる比較的 大きなドメインが結合サイトとして同定されていたものの,詳細は不明であった。そこで我々 は、MYCとMED25との相互作用様式について考察を加えるため、それぞれのアラニン変異 体を調整してこの PPI を詳細に解析した。それぞれのタンパク質は、様々なタンパク質の効 率的調整法として有用な、愛媛大澤崎らが確立したコムギ胚芽由来無細胞翻訳系を用いた (Sawasaki et al. 2002)。構造的知見の豊富な JA 主要転写因子 MYC3 に FLAG タグを導入し た FLAG-MYC3 と, GST タグ及びビオチン修飾サイトを導入した MED25 (GST-Bls-MED25) について発現を行ない、PPI を高感度かつハイスループットに検出可能な AlphaScreen を利用 して MYC3-MED25 間の相互作用を評価した結果, MYC3-MED25 間の相互作用に重要な複数 のアミノ酸を同定できた。またこの相互作用は、MYC3-JAZ間の相互作用よりも、MYC3-CMID 間に見られる相互作用様式に近しいことが示唆されたことから, MYC3 に対する MED25 の 結合ドメインを CMID-like MYC-interacting domain (CMIDM)と名付けた (Takaoka et al. 2022)。 これにより、MYC3 に対する JAZ 及び MED25 の結合サイトが同定されたので、それぞれに 対し蛍光色素を修飾したペプチド群 (JAZ9^{Jas}, JAZ10^{CMID}, 及び MED25^{CMIDM})を別途用意し, それぞれの結合親和性を蛍光異方性によって定量的に解析した。その結果、親和性の序列は

MYC3-JAZ9^{Jas}, MYC3-MED25^{CMIDM}, MYC3-JAZ10^{CMID}の順で強くな ることが示された(図 4)。この結果は,シグ ナル伝達が進むにつれ て機能するタンパク質 の序列に沿って結合が 強くなっていることを 意味し,このシグナル 伝達経路が効率的に進 行することを再認識さ せる結果であった。

JAZ9^{Jas}間の結合定数の比較。

Y. Takaoka & M Ueda - 4

3. ジャスモン酸関連転写因子に対するペプチド型阻害剤の開発

我々はジャスモン酸関連転写因子に対するケミカルツールを開発すべく,主要転写因子 MYC3 と JAZ9^{Jas} との相互作用に着目した。前述の通り,JAZ の Jas motif は MYC3 と結合す る際は全体がα-ヘリックス構造を形成するが,COI1 と結合する時には一部をランダムループ 構造に変形する。すなわち,Jas motif を基に,MYC3 との結合フォームに構造を規定すれば, シグナル伝達の上流である COI1 には結合せず,さまざまな応答を制御する転写因子に対す る選択的なケミカルツールが創出できると期待される。さらには,Jas motif は MED25 との結 合を阻害することで MYC の転写活性を抑制しているので,このケミカルツールは MYC に対 する転写阻害剤になる可能性が高い。このような発想のもと,α-ヘリックス構造に規定する ペプチドのステープル化技術を用いて,MYC 阻害剤の開発に着手した。

3-1. 分子設計と合成

G. Verdine らが 2000 年ごろに開発したペプチドのステープル化技術は、タンパク質間相互 作用を制御するペプチド型阻害剤として、臨床応用が期待される薬剤開発技術の一つである (Schafmeister et al. 2000)。具体的には、剛直な炭化水素の末端に二重結合を配した非天然ア ミノ酸を, α-ヘリックスの螺旋上の同じ向きに配置するように導入したペプチドを固相合成 により調整し, Grubbs らが開発したルテニウム触媒を用いて, 二重結合同士を連結するオレ フィンメタセシス反応でこの非天然アミノ酸を連結することで、ペプチドが共有結合でα-へ リックス構造にステープル(ホチキス留め)される。このステープル部分は立体障害になり うるため、MYC3-JAZ9^{Jas}間の相互作用を邪魔しないように、結合面とは反対の位置に向くよ うに末端オレフィン型の非天然アミノ酸を導入したペプチドを, Fmoc 固相合成によって調整 した(図 5a)。JAZ9^{Jas}は計4箇所の螺旋構造を有するため、最大2箇所をステープルするこ とができる。そこで、COII との結合時にランダムループ構造に変形する N 端側(St1),常 にα-ヘリックス構造を形成するC端側(St2),及び両方を同時にステープル化するペプチド (St3)をそれぞれ用意し、ステープル化しない野生型ペプチド(Wt)とともに、MYC3との 結合評価に用いた(図 5b)。なお, これらが溶液中でα-ヘリックス構造を形成しているかを CD スペクトルで確認した結果,予想通りステープル化の頻度に応じてα-ヘリックス含量が向 上した。一方、全くステープル化しない野生型ペプチドはほぼ完全なランダムループ構造で あることから, Jas motif は天然変性領域であり、結合相手に応じて二次構造を巧みに変形さ せることが強く示唆された(Suzuki et al. 2021)。

3-2. 試験官内での転写因子への阻害能と選択性

合成したステープルペプチドについて,結晶構造が取られている MYC3 との結合親和性を 蛍光異方性によって確認したところ,野生型ペプチド(Wt)の結合が約 5 μM の K_d値である のに対し,1箇所ステープル化した St1 および St2 は約 10 倍,2箇所ステープル化した St3 ペ プチドは約 50 倍と親和性が向上し,K_d値にして約 100 nM であることが明らかとなった(図 5c)。また,MYC3 のアイソフォームである MYC2,4 に対してもその傾向が見られ,これら のタンパク質に対しても JAZ の Jas motif はα-ヘリックス構造で結合していることが強く示唆

された。一方,同様に蛍光異方性を用いて COI1-JA-Ile に対する結合を確認したところ,N端 側をステープル化した二種類のペプチドは全く結合しないことが明らかとなった。つまり設 計通り, MYC との結合フォームに構造を規定することで、シグナル伝達上流の COII には結 合せず、下流の MYC 選択的に結合するケミカルツールとなることが期待された。

TMR-JAZ9Wt; R²¹⁸ V P Q A R K A S L A R F L E K R K E R L TMR-JAZ9St1; R²¹⁸ V P X A R K X S L A R F L E K R K E R L²³⁸ TMR-JAZ9St2; R^{218} V P Q A R K A S L \mathbf{x} R F L \mathbf{x} K R K E R L 238 TMR-JAZ9St3; R²¹⁸ X A R K X S L X R F L X K R K E R L²³⁸

X = ____ R =

	<i>K</i> _d (μM)	<i>K</i> _d (μM)	<i>K</i> _d (μM)	K _d (nM)
TMR-JAZ9Wt	5.0	3.6	11	13
TMR-JAZ9St1	2.4	1.5	2.6	ND
TMR-JAZ9St2	0.88	0.73	1.5	25
TMR-JAZ9St3	0.10	0.16	0.88	ND

図 5. (a) MYC3-JAZ9 の結晶構造 (PDB ID: 4RS9)と, (b) 合成したステープルペプチド。(c) 各 種ペプチドとタンパク質との結合親和性(ND:シグナル変化が小さく解析不可)。

3-3. 植物個体内での阻害能評価

COII には結合せず、JA 主要転写因子である MYC ファミリーに選択的に結合するステー プルペプチドが開発できたので、次に植物個体での機能評価を行なった。ダブルステープル 化した St3 ペプチドは、MYC が活性化される際に形成される MYC-MED25 との相互作用を も阻害することで、MYC の下流で起こる遺伝子発現を抑制することが期待される。そこで、 シロイヌナズナ幼植物に対してジャスモン酸前駆体であるメチルジャスモン酸(MeJA)を投 与して起こる MYC 下流のジャスモン酸応答マーカー遺伝子の転写活性化を、本ステープル ペプチドが抑制するかどうかを、リアルタイム PCR で解析を行なった。具体的には MYC2 そ れ自体やジャスモン酸生合成遺伝子の一つである AOS, 虫害耐性遺伝子 VSP2 などが MeJA 添 加によって活性化されるのに対し、St3ペプチドを MeJA と同時投与したところ、その転写活 性化が有意に抑制された(図 6b)。すなわち、本ステープルペプチドは植物個体内に浸透し、

MYC の転写活性化を阻害でき ることが示された(Suzuki et al. 2021)。本成果は、ステープル ペプチドが植物個体内で機能 することを実証した初の例で あり, 今後様々な機能性ペプチ ドの植物科学での展開が期待 される。

図 6. ステープルペプチドの植物への投与のイメージ図。

4. おわりに

植物防御応答に関連するジャスモン酸シグナル伝達の最新の知見と、それに基づいて設計・開発したステープルペプチドによるジャスモン酸シグナルの転写制御の試みについて述べた。ジャスモン酸に限らず、植物ホルモンの多くは、低濃度でも植物全体の転写ネットワークを巧みに調節することで、植物のライフサイクルにおける重要な多くのイベントを制御する。その過程では、多種類の転写因子が複雑にタンパク質間相互作用を引き起こすことが明らかになりつつあり、そのタンパク質間相互作用を制御するペプチド型ケミカルツールは 今後ますます注目を集めるものと期待される。今後我々も、これらに関連する転写因子の中で選択的に狙った遺伝子のみを時空間的に制御する方法論の開発を目指して、検討を続ける。

謝辞

本研究を遂行するにあたり,愛媛大学 澤崎達也教授,野澤彰准教授,高橋宏隆准教授に, タンパク質無細胞翻訳系や AlphaScreen 解析技術などについて有益なご助言を多数いただい た。また本稿で紹介した研究は,日本学術振興会・科学研究費補助金(17H06407,18KK0162, 20H00402,19H05283,21H00270)および武田ライフサイエンス研究助成による支援を受けて 行なったものである。この場を借りて感謝申し上げる。

引用文献

- An C, Li L, Zhai Q, You Y, Deng L, Wu F, Chen R, Jiang H, Wang H, Chen Q, Li C (2017) Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc Natl Acad Sci U S A 114:E8930-E8939. doi :10.1073/pnas.1710885114.
- Cevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J, Kazan K (2012) MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160:541-555. doi:10.1104/pp.112.202697.
- Chini A, Gimenez-Ibanez S, Goossens A, Solano R (2016) Redundancy and specificity in jasmonate signalling. Curr Opin Plant Biol 33:147-156. doi :10.1016/j.pbi.2016.07.005
- Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21:131-145. doi :10.1105/tpc.108.064097
- Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344-350. doi : 10.1038/nchembio.161
- Moreno JE, Shyu C, Campos ML, Patel LC, Chung HS, Yao J, He SY, Howe GA (2013) Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10. Plant Physiol 162:1006-1017. doi:10.1104/pp.113.218164
- Sawasaki T, Hasegawa Y, Tsuchimochi M, Kamura N, Ogasawara T, Kuroita T, Endo Y (2002) A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Letters 514:102-105. doi:10.1016/s0014-5793(02)02329-3.

Y. Takaoka & M Ueda - 7

- Schafmeister CE, Po J, Verdine GL (2000) An All-Hydrocarbon Cross-Linking System for Enhancing the Helicity and Metabolic Stability of Peptides. J Am Chem Soc 122:5891-5892. doi:10.1021/ja000563a
- Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphatepotentiated COI1-JAZ co-receptor. Nature 468:400-405. doi :10.1038/nature09430
- Suzuki K, Takaoka Y, Ueda M (2021) Rational design of a stapled JAZ9 peptide inhibiting proteinprotein interaction of a plant transcription factor. RSC Chemical Biology 2:499-502. doi : 10.1039/d0cb00204f
- Takaoka Y, Iwahashi M, Chini A, Saito H, Ishimaru Y, Egoshi S, Kato N, Tanaka M, Bashir K, Seki M, Solano R, Ueda M (2018) A rationally designed JAZ subtype-selective agonist of jasmonate perception. Nat Commun 9:3654. doi :10.1038/s41467-018-06135-y
- Takaoka Y, Suzuki K, Nozawa A, Takahashi H, Sawasaki T, Ueda M (2022) Protein-protein interactions between jasmonate-related master regulator MYC and transcriptional mediator MED25 depend on a short binding domain. Journal of Biological Chemistry 298:101504. doi :10.1016/j.jbc.2021.101504
- Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681-697. doi :10.1093/aob/mct079
- Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021-1058. doi :10.1093/aob/mct067
- Wasternack C, Kombrink E (2010) Jasmonates- Structural Requirements for Lipid-Derived Signals Active in Plant Stress Responses and Development. ACS Chem Biol 5:63-77. doi:10.1021/cb900269u
- Zhang F, Ke J, Zhang L, Chen R, Sugimoto K, Howe GA, Xu HE, Zhou M, He SY, Melcher K (2017) Structural insights into alternative splicing-mediated desensitization of jasmonate signaling. Proc Natl Acad Sci U S A 114:1720-1725. doi :10.1073/pnas.1616938114
- Zhang F, Yao J, Ke J, Zhang L, Lam VQ, Xin XF, Zhou XE, Chen J, Brunzelle J, Griffin PR, Zhou M, Xu HE, Melcher K, He SY (2015) Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525:269-273. doi :10.1038/nature14661

多様な骨格を持つストリゴラクトンの生合成経路

米山香織

愛媛大学農学研究科 〒790-8566 愛媛県松山市樽味 3-5-7

Biosynthetic pathway of structurally diverse strigolactones

Kaori Yoneyama

Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan

Keywords: plant hormone, root parasitic plant, strigolactone

DOI: 10.24480/bsj-review.13b5.00228

1. はじめに

ストリゴラクトンは,1966年,アメリカの USDA のグループによって,根寄生雑草 Strigaの 発芽を誘導する発芽刺激物質としてワタの根浸出液から単離構造決定された (Cook et al. 1966)。植物が寄生されるリスクを冒してまで発芽刺激物質ストリゴラクトンを分泌する理由 は長い間不明であったが、2005年に大阪府立大学の秋山らは、ミヤコグサの根浸出液から、絶 対共生菌であるアーバスキュラー菌根(AM)菌の菌糸分岐誘導物質としてストリゴラクトン を単離し (Akiyama et al. 2005), ストリゴラクトンの根圏シグナルとしての重要性が明らかと なった。AM 菌は, 宿主植物の根の近傍でのみ菌糸を激しく分岐させ, 共生の準備を整える。 すなわち植物は、菌糸分岐誘導物質であるストリゴラクトンを、AM菌の宿主認識シグナルと して分泌していると考えられるようになった。一方,同じ年にオランダのグループは、ストリ ゴラクトンと ABA の構造類似性から、ストリゴラクトンは ABA と同様にプラスチドのカロ テノイドから生合成されるという仮説を建て、カロテノイド生合成阻害剤やカロテノイド生 合成変異体を用いた実験から、仮説の正当性を示した (Matsusova et al. 2005)。また、ホワイ トルーピンやシロイヌナズナなどのような AM 共生しない植物も、ストリゴラクトンを生産 していることが明らかとなり、ストリゴラクトンの新しい機能の存在が示唆された (Goldwasser et al. 2008; Yoneyama et al. 2008)。そして 2008 年, 過剰な地上部枝分かれの表現型 が見られる変異体を用いた実験により、ストリゴラクトンは植物の地上部枝分かれを抑制す る新奇植物ホルモンであることが2つのグループから同時に報告された (Gomez-Roldan et al. 2008; Umehara et al. 2008)。その後, ストリゴラクトン欠損変異体と合成ストリゴラクトン (GR24)を利用した実験により、地上部だけでなく地下部の形態形成制御に、AM 菌だけでな く根粒菌共生に、ストリゴラクトンが関与していることが次々に報告された(図1)。

図1 植物成長におけるストリゴラクトンの機能

青の矢印は促進,黒のバーは抑制を示している。エンドウ,シロイヌナズナ,イネのストリゴラクト ン生合成・受容シグナル伝達欠損変異体の表現型や,合成ストリゴラクトンを与えることによる表 現型の回復を詳細に調べることにより,これらの機能は明らかにされてきた (Yoneyama. 2019)。

2. ストリゴラクトンの基本骨格

ストリゴラクトンは、現在、その構造の違いから、典型的ストリゴラクトンと非典型的ス トリゴラクトンとに大別されている(図2)。すなわち、根寄生雑草 *Striga*の発芽刺激物質と して単離構造決定された strigolの様に、6あるいは7員環(A環)と5員環(B環)、ラクト ン(C環)から構成される3環性ラクトンとメチルフラノン(D環)がエノールエーテル結合 した構造を持つものが、典型的ストリゴラクトンと呼ばれ、一方、完全な3環性ラクトンを 持たず、D環とエノールエーテル結合した構造だけを持つものは、非典型的ストリゴラクト ンと呼ばれている。典型的ストリゴラクトンのC環の立体配置が、α配位(orobanchol-type)か、 β配位(strigol-type)であるかによっても生合成経路は微妙に異なっている(図3)。

これまでにストリゴラクトンは,主に根寄生雑草の発芽刺激物質の活性を指標として,30 種類以上が単離・構造決定されている。また、少なくとも10種類以上の構造未知のストリゴ ラクトンの存在が示唆されている。そして興味深いことに、1つの植物は少なくとも3つ以上 のストリゴラクトンの混合物を分泌しているが、その理由は不明である(Yoneyama and Brewer. 2021)。

Orobanchol は、日本にも帰化している根寄生植物 Orobanche minor の発芽刺激物質として、 アカクローバーの根浸出液から単離構造決定された (Yokota et al. 1998)。その後、ダイズ、エ ンドウのようなマメ科植物、マリーゴールド、レタスのようなキク科植物、ナス科のトマト、 単子葉類のイネなどの根浸出液からも同定された (Yoneyama et al. 2008; Umehara et al. 2008;

K. Yoneyama - 2

Yoneyama et al. 2011)。Orobanchol 同様, ソルガムの根浸出液から単離構造決定された sorgomol (Xie et al. 2008)も、マメ科のレンゲ、キク科のコスモスから同定され、様々な植物種に広く分 布している (Yoneyama et al. 2008; Yoneyama et al. 2011)。一方、タバコの根浸出液から単離構 造決定された solanacol (Xie et al. 2007) は、トマトやベンサミアーナタバコとナス科のみでし か確認されておらず、エンドウの根浸出液から単離構造決定された fabacyl acetate (Xie et al. 2009)は、ソラマメのみと、特定のマメ科でのみしか確認されていない (Trabelsi et al. 2017)。 Zealactone は、トウモロコシの根浸出液から単離構造決定された、ABC 環を持たない非典型的 ストリゴラクトンであるが、イネ、ソルガム、ミレットなどの他のイネ科植物からは検出さ れていない (Xie et al. 2017)。

図2 天然ストリゴラクトンの構造

ストリゴラクトンは、エノールエーテル結合および D 環を共通の骨格としてもつ(strigol の青の線)。この 部分は活性に必須な構造である。典型的ストリゴラクトンの C 環の立体配置の違いを赤で示した。 Strigol-type は C 環が β 配位, orobanchol-type は α 配位となっている。非典型的ストリゴラクトンの heliolactone は、ヒマワリの根浸出液から単離構造決定された (Ueno et al. 2014)。BC 環部分は閉環して いないが、ストリゴラクトン前駆体である carlactone(図 3)に類似した構造であるのに対し、zealactone やエ ンバクから単離構造決定された avenaol (Kim et al. 2014)は、その前駆体が予想できないほど自由な構 造をしており、多種多様なストリゴラクトンが潜在的に多数存在することが予想される。

3. ストリゴラクトンの生合成経路

過剰な地上部枝分かれの原因遺伝子が,シロイヌナズナ,エンドウ,イネ,ペチュニアから同定され,それぞれ, MORE AXILLARY GROWTH (MAX), RMOSUS (RMS), DWARF (D),

K. Yoneyama - 3

DECREASED APICAL DOMINANCE (DAD) と名付けられ,機能解析が行われた。その結果,ス トリゴラクトンは共通した主要合成経路をもっており,カロテノイド異性化酵素,2 つのカロ テノイド酸化開裂酵素の連続的な反応により,カロテノイドから非典型的ストリゴラクトン である carlactone (CL)が生成される(図3)。CLは,大腸菌を用いた *in vitro* 系により同定さ れたが (Alder et al. 2012),その後,イネやシロイヌナズナに内生物質として存在することが確 認された (Seto et al. 2014)。

シトクロム P450 をコードする CYP711A は,CL から carlactonoic acid (CLA)への変換を触媒 する (Abe et al. 2014)。この CL から CLA への変換は、既述の植物 4 種だけでなく、ソルガム、 トウモロコシ,トマトなどの主要作物,下等植物のイヌカタヒバ,モデル樹木のポプラの CP711A も全て触媒することが明らかにされており,植物界に高く保存されていることがわ かる (Yoneyama et al. 2018)。興味深いことに、植物種によっては、CYP711A が、CLA からさら に典型的ストリゴラクトンへの変換を触媒する。例えば、シロイヌナズナは、CYP711A1の1 つしか持っていないが、イネ(Oryza sativa)は5つの CYP711A を持っている。そのうちの1 つ, CYP711A2は, CLをイネの主要なストリゴラクトンの1つである 4-deoxyorobanchol (4DO) へと変換する (Zhang et al. 2014)。さらにもう1つの CYP711A3 は, 4DO を orobanchol へと変 換する (Zhang et al. 2014)。CYP711A の機能を調べた植物種の中で, 4DO を生産・分泌する事 が確認されている植物のCYP711Aは、CLからCLAを経て4DOを生成する。しかし、orobanchol を生産しているが, 4DO を生産していない植物の CYP711A は, 4DO を基質として与えても, イネの CYP711A3 のように orobanchol を生成しない事がわかった。しかし、トウモロコシは、 4DOも orobanchol も生産・分泌する事が確認できないにも関わらず,3 つの CYP711A のうち, CYP711A18 が, 4DO から orobanchol へと変換する能力を持っている事がわかった。これらの ことから,植物のストリゴラクトン生産能力は、本来備わっている特性だけでなく、基質の 有無によっても決定されることが示唆された (Yoneyama et al. 2018)。

最近では、逆遺伝学的手法により、CLA 以降の合成経路の解明が急激に進んでいる。シロ イヌナズナでは、メチルトランスフェラーゼにより、CLA から methyl carlactonoate(MeCLA) へ (Wakabayashi et al. 2021b), 2-オキソグルタル酸/鉄依存性ジオキシゲナーゼにより、MeCLA から hydroxymethyl carlactonoate(1'-OH-MeCLA)へと変換される(Yoneyama et al. 2020)。さ らに、CYP711A 以外のシトクロム P450 の関与も次々に報告されている。CYP722C は、 CYP711A とは全く異なるクレイドに位置するが、ササゲやトマトの CYP722C は、CLA を直 接 orobanchol へと変換する事が明らかにされた(Wakabayashi et al. 2019)。一方、ワタの CYP722C は、CLA から 5-deoxystrigol への変換を触媒した(Wakabayashi et al. 2020)。別のクレ イドに位置するソルガムの CYP728B35 は、リン酸欠乏によって発現が上昇することにより選 抜され、5-deoxystrigol から sorgomol への変換に関与する(Wakabayashi et al. 2021a)。さらに、 多様なストリゴラクトン生成には、CL の下流だけでなく、カロテノイドか ら枝分かれした上流も重要であることが示唆されている(Baz et al. 2018, 図 3 のライトブル 一背景)。

図 3 ストリゴラクトンの生合成経路 (Yoneyama and Brewer 2021)

4. 養分条件によるストリゴラクトンの生産・分泌制御

AM 菌と共生する植物において、ストリゴラクトンの生産・分泌量は植物の養分状況に強 く依存する。AM 菌による宿主植物への養分供給において, 最も重要視されている養分はリン 酸であるが、これまで調べられた AM 菌の宿主植物は、共通してリン酸欠乏によってストリ ゴラクトンの生産・分泌が顕著に促進される。一方、ソルガム、トウモロコシ、レタス、マリ ーゴールドなどは、リン酸欠乏だけでなく窒素欠乏によってもそれぞれのストリゴラクトン 生産・分泌が促進される。しかし、アカクローバー、アルファルファは、窒素欠乏では促進さ れない。根粒菌と共生関係を形成するマメ科植物は、AM 菌による窒素供給を期待せず、スト リゴラクトン分泌が窒素欠乏には応答しない可能性が考えられたが、同じマメ科のレンゲは、 窒素欠乏でもストリゴラクトンの分泌が顕著に促進された。また, 非マメ科のトマトは窒素 欠乏には応答しなかった (Yoneyama et al. 2012; Yoneyama. 2019)。このような養分欠乏に対す る異なるストリゴラクトン分泌応答の理由は不明のままである。さらに,AM 共生しないマメ 科のホワイトルーピンやシロイヌナズナは、窒素欠乏でもリン酸欠乏でもストリゴラクトン の分泌は促進されない (Yoneyama et al. 2008; Seto et al. 2014)。AM 菌の非宿主植物が養分欠乏 によるストリゴラクトン分泌促進が認められないことは合理的であるが、シロイヌナズナで は、窒素欠乏やリン酸欠乏によって地上部枝分かれ抑制が認められることから (de Jong et al. 2014; Kohlen et al. 2011), 養分欠乏がストリゴラクトン生産に影響を与えている可能性は否定 できない。窒素欠乏によって、シロイヌナズナのストリゴラクトン生合成遺伝子の発現が増 加するという報告はある(Ito et al. 2016)が、どのストリゴラクトンの内生量が上昇するのか は明らかになっていない。少なくともリン酸欠乏による CL の内生量増加は認められなかっ た (Seto et al. 2014)。

5. 今後の展望

多種多様なストリゴラクトンがどのように生合成され、分泌されるのか、その仕組みを解 明することにより、なぜ、植物は多種多様なストリゴラクトンを生産・分泌するのか、その理 由解明につながることが期待される。

謝辞

シンポジウムの企画に際しては、オーガナイザーとして瀬尾光範博士(理化学研究所)と 岡本昌憲博士(宇都宮大学)にご尽力頂きました。感謝申し上げます。

本研究は, JST さきがけ(JPMJPR17QA)および科研費(15J40043, 16K18560)の助成を受けたものです。

引用文献

Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T et al. (2014) Carlactone is converted to carlactonoic acid by *MAX1* in *Arabidopsis* and its methyl ester can directly interact with AtD14 *in vitro*. Proc Natl Acad Sci U S A 111: 18084-18089. doi.org/10.1073/pnas.1410801111

- Akiyama K, Matsuzaki K, Hayashi H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827. doi:10.1038/nature03608
- Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisia S, Bouwmeester H, Beyer P, Al-Babili S. (2012) The path from β-caroteine to carlactone, a strigolactone-like plant hormone. Science 335: 1348-1351. doi. 10.1126/science.1218094
- Baz L, Mori N, Mi J, Jamil M, Kountche BA, Guo X, Balakrishna A, Jia KP, Vermathen M, Akiyama K et al. (2018) 3-Hydroxycarlactone, a novel product of the strigolactone biosynthesis core pathway. Mol Plant 11: 1312-1314. doi.org/10.1016/j.molp.2018.06.008
- Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. (1966) Germination of witchweed (*Striga lutea Lour.*): isolation and properties of a potent stimulant. Science 154:1189-1190. doi.org/10.1126/science.154.3753.1189
- de Jong, George G, Ongaro V, Williamson L, Willetts B, Ljung K, McCulloch H, Leyser O. (2014) Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply. Plant Physiol 166: 384-395. doi.org/10.1104/pp.114.242388
- Goldwasser Y, Yoneyama K, Xie X, Yoneyama K. (2008) Production of strigolactones by *Arabidopsis thaliana* responsible for *Orobanche aegyptiaca* seed germination. Plant Growth Regul 55: 21-28. doi.org/10.1007/s10725-008-9253-z
- Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matsusova R, Danoun S, Portais JC et al. (2008) Strigolactone inhibition of shoot branching. Nature 455: 189-194. doi:10.1038/nature07271
- Ito S, Ito K, Abe N, Takahashi R, Sakai Y, Yajima S. (2016) Effects of strigolactone signaling on *Arabidopsis* growth under nitrogen deficient stress condition. Plant signaling & behavior 11: e1126031. doi.org/10.1080/15592324.2015.1126031
- Kim Hl, Kisugi T, Khetkam P, Xie X, Yoneyama K, Uchida K, Yokota T, Nomura T, McErlean CSP, Yoneyama K. (2014) Avenaol, a germination stimulant for root parasitic plants from *Avena strigose*. Phytochemistry 103: 85-88. doi.org/10.1016/j.phytochem.2014.03.030
- Kohlen W, Charnikhova T, liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O,
 Bouwmeester H, Ruyter-Spira C. (2011) Strigolactones are transported through the xylem and play
 a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host
 Arabidopsis. Plant Physiol 155: 974-987. doi.org/10.1104/pp.110.164640
- Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ. (2005) The strigolactone germination stimulants of the plant-parasitic *Striga* and *Orobanche* spp. are derived from the carotenoid pathway. Plant Physiol 139: 920-934. doi.org/10.1104/pp.105.061382
- Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S. (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci U S A 111: 1640–1645. doi.org/10.1073/pnas.1314805111
- Trabelsi I, Yoneyama K, Abbes Z, Amri M, Xie X, Kisugi T, Kin HI, Kharrat M, Yoneyama K. (2017) Characterization of strigolactones produced by *Orobanche foetida* and *Orobanche crenata* resistant faba bean (*Vicia faba* L.) genotypes and effects of phosphorus, nitrogen, and potassium deficiencies

K. Yoneyama - 7

on strigolactone production. South African Journal Botany 108: 15-22. doi.org/10.1016/j.sajb.2016.09.009

- Ueno K, Furumoto T, Umeda S, Mizutani M, Takikawa H, Batchvarova R, Sugimoto Y. (2014) Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry 108: 122-128. doi.org/10.1016/j.phytochem.2014.09.018
- Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K et al. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455: 195–200. doi:10.1038/nature07272
- Wakabayashi T, Hamana M, Mori A, Akiyama R, Ueno K, Osakabe K, Osakabe Y, Suzuki H, Takikawa H, Mizutani M et al. (2019) Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Sci Adv 5: eaax9067. doi: 10.1126/sciadv.aax9067
- Wakabayashi T, Ishiwa S, Shida K, Motonami N, Suzuki H, Takikawa H, Mizutani M, Sugimoto Y. (2021a) Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis. Plant Physiol 185: 902-913. doi.org/10.1093/plphys/kiaa113
- Wakabayashi T, Shida K, Kitano Y, Takikawa H, Mizutani M, Sugimoto Y. (2020) CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Planta 251: 97. doi.org/10.1007/s00425-020-03390-6
- Wakabayashi T, Yasuhara R, Miura K, Takikawa H, Mizutani M, Sugimoto Y. (2021b) Specific methylation of (11R)-carlactonoic acid by an Arabidopsis SABATH methyltransferase. Planta 254:88 doi.org/10.1007/s00425-021-03738-6
- Xie X, Kisugi T, Yoneyama K, Nomura T, Akiyama K, Uchida K, Yokota T, McErlean CSP, Yoneyama K (2017) Methyl zealactonoate, a novel germination stimulant for root parasitic weeds produced by maize. J. Pest. Sci. 42: 58-61. doi.org/10.1584/jpestics.D16-103
- Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K. (2007) 2-epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem 55: 8067-8072. doi.org/10.1021/jf0715121
- Xie X, Yoneyama K, Harada Y, Fusegi N, Yamada Y, Ito S, Yokota T, Takeuchi Y, Yoneyama K.
 (2009) Fabacyl acetate, a germination stimulant for root parasitic plants from *Pisum sativum*.
 Phytochemistry 70: 211-215. doi.org/10.1016/j.phytochem.2008.12.013
- Xie X, Yoneyama K, Kusumoto D, Yamada Y, Takeuchi Y, Sugimoto Y, Yoneyama K. (2008) Sorgomol, germination stimulant for root parasitic plants, produced by *Sorghum bicolor*. Tetrahedron Letters 49: 2066-2068. doi.org/10.1016/j.tetlet.2008.01.131
- Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Alectrol and orobanchol, germination stimulants for *Orobanche minor*, from its host red clover. Phytochemistry 49: 1967-1973. doi.org/10.1016/S0031-9422(98)00419-1
- Yoneyama K. (2019) How do strigolactones ameliorate nutrient deficiencies in plants? Engineering plants for agriculture 11. doi.10.1101/cshperspect.a034686

- Yoneyama K, Akiyama K, Brewer PB, Mori N, Kawano-Kawada M, Haruta S, Nishiwaki H, Yamauchi S, Xie X, Umehara M et al. (2020) Hydroxyl carlactone derivatives are predominant strigolactones in *Arabidopsis*. Plant Direct 4: e00219. doi.org/10.1002/pld3.219
- Yoneyama K and Brewer PB. (2021) Strigolactones, how are they synthesized to regulate plant growth and development? Curr Opin Plant Biol 63: 102072. doi.org/10.1016/j.pbi.2021.102072
- Yoneyama K, Mori N, Sato T, Yoda A, Xie X, Okamoto M, Iwanaga M, Ohnishi T, Nishiwaki H, Asami T. et al. (2018) Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis. New Phytol 218: 1522–1533. doi.org/10.1111/nph.15055
- Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K. (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235: 1197-207. doi.10.1007/s00425-011-1568-8
- Yoneyama K, Xie X, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K. (2011) Characterization of strigolactones exuded by Asteraceae plants. Plant Growth Regul. 65: 495-504. doi.10.1007/s10725-011-9620-z
- Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K. (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179: 484-494. doi.org/10.1111/j.1469-8137.2008.02462.x
- Zhang Y, van Dijk AD, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O et al. (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10:1028-1033. doi.10.1038/NCHEMBIO.1660

生理活性物質の膜輸送を介した作用メカニズム

渡邊 俊介¹,清水 崇史²,瀬尾 光範³

¹Biochemistry and Plant Molecular Physiology Research Unit, UMR INRAE CNRS SupAgro 2 Place Pierre Viala, 34060 Montpellier cedex 02, France ²奈良先端科学技術大学院大学 先端科学技術科 〒630-0192 奈良県生駒市高山町 8916-5 ³理化学研究所 環境資源科学研究センター 〒230-0045 神奈川県横浜市鶴見区末広町 1-7-22

Mode of action of bioactive molecules through transmembrane transport

Shunsuke Watanabe¹, Takafumi Shimizu², Mitsunori Seo³

 ¹Biochemistry and Plant Molecular Physiology Research Unit, UMR INRAE CNRS SupAgro 2 Place Pierre Viala, 34060 Montpellier cedex 02, France
 ²Graduate School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
 ³IKEN Center for Sustainable Resource Science
 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan

Keywords: abscisic acid (ABA), auxin, indole-3-butyric acid (IBA), NPF, plant hormones

DOI: 10.24480/bsj-review.13b6.00229

1. はじめに

生体内で作り出される多種多様な化合物は,自身や他の生物の生命活動に様々な形で用い られている。いずれの場合にも,細胞もしくは細胞内小器官の内外を仕切る生体膜を介した 化合物の移動を必要とする場合が多い。化合物の膜輸送を司る因子,すなわち「輸送体」に 関する研究は精力的に進められているが,生体内に存在すると考えられる化合物の数,もし くはゲノム情報から推測される輸送体タンパク質の数に比べ,機能(輸送基質)が明らかに されている輸送体の数は圧倒的に少ない。

私たちは、植物ホルモンに代表される低分子生理活性物質に着目し、その輸送体の同定に 取り組んでいる。ダーウィンの実験でもよく知られているように、オーキシン(indole-3-acetic acid; IAA) は植物体内を極性輸送される。1990年代頃からオーキシンの輸送に欠陥を持つ変 異体が形態異常や、外生オーキシンに対する感受性を指標として数多く単離され、その解析 を通して現在までに PIN、AUX、ABC型に分類される複数の輸送体によってオーキシンの輸 送が複雑に制御されている様子が明らかになってきている(Benjamins and Scheres 2008; Petrasek and Friml 2009; Grones and Friml 2015; Anfang and Shani 2021)。これに対し、他の植物 ホルモンに関しては同位体ラベルした化合物の投与や接木実験などから植物体内を輸送され る事が示唆されているものもあるが、その制御機構については不明な点が多い。この様な状 況の中、私たちは NPF と呼ばれるタンパク質ファミリーが複数の植物ホルモンの輸送に関与 する事をこの 10 年ほどの間に明らかにしてきたので、本稿ではその一部について紹介したい。

2. 乾燥に応答した気孔の閉鎖とアブシシン酸(ABA)

ABA の代表的な生理作用の一つとして、気孔の閉鎖誘導が挙げられる。葉の水分含量を変 えず、根の一部にのみ乾燥を与えた場合にも気孔の閉鎖が誘導される事、またこの時に道管 中の ABA 濃度の上昇が見られる事から「根で合成された ABA が道管を通して地上部に運ば れて気孔の閉鎖を誘導する」という考えが長い間受け入れられてきた(Davies and Zhang 1991; Jiang and Hartung 2008; Schachtman and Goodger 2008; Christmann et al. 2013)。しかしながらそ の後の ABA 欠損変異体を用いた接木実験などでは、気孔の閉鎖は地上部の ABA 生合成能力 に大きく依存するという報告が多数なされている(Holbrook et al. 2002; Christmann et al. 2007; McAdam et al. 2016)。さらに、シロイヌナズナにおいて ABA 生合成の鍵酵素である NCED3 とそれに続く細胞質内での ABA 生合成最終段階の反応を触媒する ABA2, AAO3 といった酵 素が葉の維管束周辺の細胞に多く分布している事などから(Endo et al. 2008; Kuomori et al. 2014)、乾燥に応答して ABA が主に葉の維管束組織で合成されると考えられるようになって いる。実際に、シロイヌナズナ ABA 欠損変異体 *aba2* において正常な *ABA2* 遺伝子を維管束 組織(師部伴細胞)特異的に発現させる事により、その表現型が回復する事が確認されてい る(Merilo et al. 2018)。これらの事は、維管束組織で合成された ABA が孔辺細胞へと輸送さ れ、気孔の閉鎖を誘導する事を示唆している。

3. ABA 輸送体

孔辺細胞は、原形質連結(プラスモデスマータ)を持たない。また、ABA 受容体は細胞膜 上に存在する可能性も考えられていたが、現在では細胞質もしくは核内で機能する可溶性タ ンパク質である PYR1/PYL/RCAR が主要な ABA 受容体である事が明らかになっている (Rodriguez et al. 2019)。そのため、維管束周辺の細胞で合成された ABA が受容体に認識さ れ気孔の閉鎖を誘導するためには、ABA が一度細胞外に排出され孔辺細胞内に取り込まれる という過程が必要になる。ABA は pKa 値 4.7 の弱酸であり、溶液中では pH に依存してカル ボキシル基がイオン化する解離型(COO・)と非解離型(COOH)の 2 つの形態の存在比が変 化する。非解離型の ABA は比較的脂溶性が高く、拡散によって細胞膜を通過する事ができ る。また、オーキシン輸送体の多くが形態異常やオーキシン低感受性を示す変異体の解析を 通して同定されてきたのに対し、ABA の輸送に欠陥を持つ変異体はいわゆる順遺伝学的手法 では単離されてこなかった。これらの事から、ABA の細胞膜を介した移動に能動的な仕組み が必要であるかどうかは長らく不明であった。

この様な状況の中,私たちはABAの生体膜を介した移動を仲介する因子,すなわち輸送体 (トランスポーター)となり得るタンパク質を活性に基づいて網羅的にスクリーニングする 方法を,ABA 受容体 PYR1/PYR/RCAR がリガンド依存的に PP2C タンパク質ホスファターゼ と相互作用するという報告(Park et al. 2009)から着想を得て構築した。すなわち,ABA 受容 体と PP2C の相互作用を検出する酵母 two-hybrid(Y2H)系を確立し,そこに ABA を細胞内 に取り込む輸送体を発現させた場合には、選択培地上での酵母の生存が通常より低濃度の ABA 存在下で可能になると期待したのである(図1)。これに基づいて、シロイヌナズナの cDNA ライブラリーを用いたランダムなスクリーニングを行った結果,低親和性の硝酸イオ ン輸送体として知られている NRT1(NITRATE TRANSPORTER 1)タンパク質を含むファミ リーメンバー (Tsay et al. 2007; Leran et al. 2014; Corratge-Faillie and Lacombe 2017) のいくつか が、細胞内に ABA を取り込む活性を持つ事を明らかにした(Kanno et al. 2012)。NRT1 が属 する輸送体ファミリーは動物の SLC15 (Solute Carrier 15) に相当し、シロイヌナズナには 53 のメンバーが存在する。その中には、小ペプチド(主にジペプチドとトリペプチド)の輸送 体(PEPTIDE TRANSPORTER; PTR)として機能するタンパク質が存在する事も報告されてい る(Tsay et al. 2007; Leran et al. 2014; Corratge-Faillie and Lacombe 2017)。私たちは当初 ABA 輸送活性を持つ当該ファミリーメンバーに AIT(ABA-IMPORTING TRANSPORTER)という 名前を付けたが、後述する通り同一のタンパク質が複数の化合物を輸送する場合がある事か ら、基質に基づいた命名は後に混乱を引き起こす事が懸念された。そのため、NRT1 と PTR を含む輸送体ファミリー全体を NRT1/PTR FAMILY (NPF) として系統的に 8 つのサブファ ミリーに分類し, NPF1.1, NPF1.2, ・・・NPF8.1, NPF8.2, ・・・という様に統一した呼び 方をする事が提案されている(Leran et al. 2014)。私たちが酵母で確認した中では, NPF4.6 が ABA に対して比較的高い輸送活性を示した。NPF4.6 は過去の研究で硝酸イオン輸送体とし ての機能が明らかにされていた NRT1.2(Huang et al. 1999)と同一のタンパク質であるが, ABA に対する Km 値が 0.5~5 µ M と比較的低い(Kanno et al. 2012; Leran et al. 2020) (硝酸 イオンに対する Km 値は約 5.9 mM)。さらに NPF4.6 の機能を失った変異体(npf4.6) におい て発芽時の外生 ABA に対する感受性が低下している事, NPF4.6 の過剰発現により発芽時の 外生 ABA に対する感受性が高まる事から, NPF4.6 が植物体内で ABA 輸送体として機能し得 る事が示された(Kanno et al. 2012)。

図 1. ABA 受容体 (PYR)と PP2C タンパク質ホスファターゼの ABA 依存的な相互作用を検出 する Y2H 系を用いた輸送体の同定

ここで本題に入る。NPF4.6 は、維管束組織から孔辺細胞への ABA の輸送に関与している のであろうか? npf4.6 単独変異体においては葉の表面温度に関して野生型との違いが見られ ないが、 ABA の内生量が減少した(完全には欠損しない) aao3 変異体と npf4.6 を掛け合わ せた二重変異体においては aao3 単独変異体に比べて葉の表面温度が低下する(Shimizu et al.

S. Watanabe *et al.* - 3

図 2. *npf4.6* 変異の葉の表面温度に対する影響 (A) 発芽後約1ヶ月の野生型, *npf4.6*, *aao3*, *aao3 npf4.6* および *aao3 npf4.6* 背景で孔辺細 胞特異的に正常な *NPF4.6* を発現させる形質転換植物(*aao3 npf4.6/pMYB60:NPF4.6*)。 (B) サーモグラフィーで観察した表面温度。

2021)(図 2)。この事から, NPF4.6 は気孔の閉鎖を促進する働きを持つと考えられる。*NPF4.6*のゲノム配列の下流に GUS を挿入し, 自身のプロモーターで NPF4.6 と GUS の融合タンパク 質を発現させる形質転換体 (*pNPF4.6:gNPF4.6-GUS*)において, 維管束組織および孔辺細胞で GUS 活性が検出された (Shimizu et al. 2021)(図 3)。NPF4.6 は細胞内に ABA を取り込む活

性を持つ事(Kanno et al. 2012), aao3 npf4.6 において気孔の開度が aao3 に比べて高ま る(葉の表面温度が低下する)事(Shimizu et al. 2021) を考えると、孔辺細胞における ABA の取り込みが NPF4.6 の主要な働きで あると予想された。この事は, aao3 npf4.6二 重変異体背景で,正常な NPF4.6 遺伝子を孔 辺細胞特異的な MYB60 プロモーターで発 現させると気孔の閉鎖が促進する(葉の表 面温度が高まる)という実験結果(Shimizu et al. 2021) (図 3) からも支持される。維管 束組織で発現している NPF4.6 の生理的な 機能については現時点で不明であるが、生 合成部位から孔辺細胞へと輸送される ABA 量の制御等に関与している可能性な どが考えられる。

図 3. NPF4.6 タンパク質の局在部位 NPF4.6 プロモーター支配下で NPF4.6 と GUS の融合タンパク質を発現させる 形質転換体における GUS 染色。(A) ロ ゼット葉。(B) 表皮の拡大写真.

前述の通り,輸送活性に強弱はあるものの NPF4.6 以外にも複数の NPF が ABA を基質とする (Kanno et al. 2012; Chiba et al. 2015)。そのうちの NPF5.1 に関しては,機能欠失変異体 (*npf5.1*) において葉の表面温度が野生型よりも高い (気孔開度が低い) 事が明らかになった

(Shimizu et al. 2021) (図 4)。この事は, NPF5.1 が気孔の閉鎖を負に制御する因子で ある事を意味している。NPF5.1 は NPF4.6 と 同様に、酵母においては細胞内への ABA の 取り込みを仲介する(Shimizu et al. 2021)。 NPF5.1の過剰発現により発芽時のABAに対 する感受性が高まる事からも, NPF5.1 が植物 体内で ABA 取り込み輸送体として機能する という事が支持される(Shimizu et al. 2021)。 それでは何故,同じ ABA 取り込み輸送体と しての機能を持つ NPF4.6 と NPF5.1 の機能 欠失が気孔の開度に関して反対の表現型を 示すのであろうか?それはおそらく,二つの タンパク質の機能部位の違いによるもので あると考えられる。前述の通り NPF4.6 が孔 辺細胞で ABA の取り込みに関与している一 方で、NPF5.1 の発現は少なくともプロモー ター活性に基づくと葉肉細胞や維管束組織 など広範囲で見られる(図5)。これらの事 から,NPF5.1 は維管束組織から孔辺細胞へと 輸送される ABA を葉肉細胞や維管束組織に 取り込む事で気孔の閉鎖を抑制しており, npf5.1においては細胞間を通して維管束組織 から孔辺細胞へ辿り着く ABA の量が増大す る事で気孔が閉鎖すると考えられる(図6)。 npf4.6 npf5.1 二重変異体と野生型の葉の表面 温度が同程度である事(図 2)は, NPF4.6 に よる孔辺細胞への ABA の取り込みが気孔閉 鎖において重要である事を改めて意味して いる。

図 4. 野生型及び npf5.1 の葉の表面温度 (A) 発芽後約 1 ヶ月の植物。(B) サー モグラフィーで観察した表面温度。

図 5. NPF5.1 のプロモーター活性 NPF5.1 プロモーター支配下で GUS を発現 させる形質転換体のロゼット葉における GUS 染色。

長らくその実態が不明であった ABA の輸送メカニズムであるが,ここで紹介した NPF4.6, NPF5.1 を含め,実に多くの ABA 輸送体が近年になって続々と報告されている(Kuromori et al. 2018; Seo and Marion-Poll 2019; Anfang and Shani 2021)。本稿では主に気孔閉鎖に焦点を当て ABA 輸送の必要性を考えてきたが,これまでに知られている多様な ABA の生理作用と照 らし合わせると複数の ABA 輸送体の存在意義がより鮮明になるであろう。

図 6. NPF4.6, NPF5.1 の維管束組織から孔辺細胞への ABA 輸送と 気孔閉鎖における機能

4. NPF の多様な機能

NPF は古くから知られている硝酸イオン,小ペプチド,そして前述の ABA 以外にも,オー キシン (Krouk et al. 2010),ジベレリン (Saito et al. 2015; David et al. 2016; Tal et al. 2016), ジャスモン酸 (Ishimaru et al. 2017) といった植物ホルモンや,グルコシノレート (Nour Eldin et al. 2012),アルカロイド (Payne et al. 2017),ニコチアナミン (Chao et al. 2021)等の二次 代謝産物を基質とする事が明らかになってきている。ファミリー全体を見渡した場合もそう であるが,興味深い点はある特定の NPF が複数の基質を認識する場合も多々見受けられる事 である。

タルウマゴヤシ(Medicago truncatula)の nip/latd は、根粒形成、側根形成、主根伸長等に 欠陥を持つ変異体である(Veereshlingam et al. 2004; Bright et al. 2005)。NIP/LATD は硝酸イ オンに対して輸送活性を示す NPF タンパク質をコードするが、nip/latd 変異体で同じく硝酸 イオンを基質とするシロイヌナズナ NRT1.1/CHL1(NPF6.3)を発現させた場合には主根成長、 側根形成が部分的に回復する一方で、根粒形成に関する表現型は相補されない(Bagchi et al. 2012)。この事は、NIP/LATD が硝酸イオン以外に根粒形成に重要な役割を果たす何らかの化 合物の輸送体として機能する可能性を示唆している。今後 NPF の機能解析を通して、化合物 の新たな働きや新規の生理活性物質・植物ホルモンが発見される事が期待される。

5. インドール酪酸(IBA)の輸送に関わる NPF

シロイヌナズナに存在する 53 の NPF の中には,植物体内での機能が明らかになっていないものが多数存在する。さらに前述の通り,ある一つの基質輸送に関する生理的役割が明らかになっている NPF があったとしても,その NPF に他の未知の機能が隠されている可能性

も考えられる。この様な事から、私たちは NPF の機能を失った変異体の表現型を幅広く観察している。

この過程において,過去に硝酸イオンおよ びカリウムイオンを基質とする事が報告さ れていた NPF7.3 (NRT1.5 としても知られる) (Lin et al. 2008; Li et al. 2017)の機能を失っ た変異体(npf7.3)の根の重力屈性が異常に なっている事に気付いた (Watanabe et al. 2020) (図7)。この表現型は培地中に硝酸 イオンおよびカリウムイオンが高濃度に量 含まれている条件においても観察される事 から,NPF7.3 の基質となる他の化合物の存 在が示唆された。オーキシンが根の重力屈性 に関与している事がよく知られている。 NPF7.3 は酵母において主要な内生オーキシ ンであるインドール酢酸(IAA)に対して優 位な取り込み活性を示したが, IAA は比較的 脂溶性が高いために NPF7.3 非存在下でも酵 母細胞内に取り込まれやすく、また NPF4.6 がABAに対して示した輸送活性ほどNPF7.3 の IAA 輸送活性は顕著ではなかった。これ に対し、植物の内生化合物であり IAA の前 駆体としても知られる IBA は膜透過性が比 較的低く, NPF7.3の基質として IAA よりも 効率的に輸送された。npf7.3 で観察される根 の重力屈性異常は外生 IAA 処理で回復する が IBA 処理では回復しない。また, npf7.3 に おいては野生型に比べてオーキシン誘導性 プロモーターである DR5 の活性が低下して おり,重力に応答した DR5 活性の偏差分布 が起きにくい(図 8)。さらに NPF7.3 の発 現は、IBAの IAA への変換が活発に行われ る事が予想されているコルメラ細胞で見ら れる。これらの事から, npf7.3 では IBA から IAA への変換が行われる細胞内への IBA の 取り込みが低下していると考えられる

(Watanabe et al. 2020) (図 9)。IBA から合成される IAA が側根形成に重要である事が

図 7. 野生型, npf7.3の根の重力屈性 (A) 垂直に立てた培地上で npf7.3 の根は 波を打ち重力に向かってまっすぐに伸長 しにくい. (B) 重力方向を 90 度変化させ た場合 npf7.3 の根は重力方向に屈曲しに くい.

図 8. 野生型, npf7.3における DR5 活性 根の重量方向を 90 度変化させると 野生 型では重力側に DR5 活性(赤) が偏って 分布するが, npf7.3 ではそれがみられな い.

よく知られていたが、私たちの NPF の機能解析を通して、IBA から合成される IAA が根の重 力屈性にも必要であるという新たな発見をもたらす事ができた。

図 9. NPF7.3 によって細胞内に取り込まれた IBA はペルオキシソーム内 での β 酸化によって IAA へと変換され,重力応答を引き起こす.

6. 終わりに

これまで私たちの NPF に着目した研究を中心に紹介してきたが,近年になって異なる輸送 体ファミリーに属する新たな植物ホルモン輸送体の同定が進んでいる(Anfang and Shani 2021)。今後,植物ホルモンの輸送介の詳細な制御メカニズムを明らかにしていくためには, 植物体内における植物ホルモンの分布を正確に把握する事が必要であろう。現在私たちは, 一細胞・超微量サンプルからの質量分析系の確立に取り組んでいる(Shimizu et al. 2015;清水 ら 2020)。これにより,適したマーカー遺伝子やセンサータンパク質が確立されていない植 物ホルモンに関してもその局在を,高い空間解像度で明らかにする事が可能になると期待し ている。近い将来,これらの成果についても紹介できる日が来る事を強く願っている。

引用文献

- Anfang M, Shani E (2021) Transport mechanisms of plant hormones. Curr Opin Plant Biol 63: 102055. doi: 10.1016/j.pbi.2021.102055
- Bagchi R, Salehin M, Adeyemo OS, Salazar C, Shulaev V, Sherrier DJ, Dickstein R (2012) Functional assessment of the Medicago truncatula NPF/TATD protein demonstrates that it is a high-affinity nitrate transporter. Plant Physiol 160: 906-916. doi: 10.1104/pp.112.196444
- Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59: 443-465. doi: 10.1146/annurev.arplant.58.032806.103805

- Bright LJ, Liang Y, Mitchell DM, Harris JM (2005) The LATD gene of Medicago truncatula is required for both nodule and root development. Mol Plant-Microbe interact 18: 521-532. doi: 10.1094 / MPMI -18-0521
- Chao ZF, Wang YL, Chen YY, Zhang CY, Wang PY, Song T, Liu CB, Lv QY, Han ML, Wang SS et al. (2021) NPF transporters in synaptic-like vesicles control delivery of iron and copper to seeds. Sci Adv 7: eabh2450. doi: 10.1126/sciadv.abh2450
- Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, Kamiya Y, Seo M (2015) Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J Plant Res 128: 679-686. doi: 10.1007/s10265-015-0710-2
- Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. Curr Opin Plant Biol 16: 293-300. doi: 10.1016/j.pbi.2013.02.011
- Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signaling of water shortage. Plant J 52: 167-174. doi: 10.1111/j.1365-313X.2007.03234.x
- Corratge-Faillie C, Lacombe B (2017) Substrate (un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. J Exp Bot 68: 3107-3113. doi: 10.1093/jxb/erw499
- David LC, Berquin P, Kanno Y, Seo M, Danniel-Vedele F, Ferrarion-Mery S (2016) N availavility modulates the role of NPF3.1, a gibberellin transporter, in GA-mediated phenotypes in Arabidopsis. Planta 244: 1315-1328. doi: 10.1007/s00425-016-2588-1
- Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Anu Rev Plant Biol Plant Mol Biol 42: 55-76. doi: 10.1146/annurev.pp.42.060191.000415
- Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K et al. (2008) Drought induction of Arabidopsis 9-cis-eposycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147: 1984-1993. doi: 10.1104/pp.108.116632
- Grones P, Friml J (2015) Auxin transporters and binding proteins at a glance. J Cell Sci 128: 1-7. doi: 10.1242/jcs.159418
- Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABAdeficient roots: response of grafted plants to soil drying. J Exp Bot 53: 1503-1514. Doi: 10.1093/jexbot/53.373.1503
- Huang NC, Liu KH, Lo HJ, Tsay YF (1999) Cloning and functional characterization of and Arabidopsis
 Nitrate Transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11: 1381-1392. doi: 10.1105/tpc.11.8.1381
- Ishimaru Y, Oikawa T, Suzuki T, Takeishi S, Matsuura H, Takahashi K, Hamamoto S, Uozumi N, Shimizu T, Seo M et al. (2017) GTR1 is a jasmonic acid and jasmonoyl-L-isoleucine transporter in Arabidopsis thaliana. Biosci Biotechnol Biochem 81: 249-255. doi: 10.1080/09168451.2016.1246174
- Jiang F, Hartung W (2008) Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59: 37-43. doi: 10.1093/jxb/erm127

- Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci USA 109: 9653-9658. doi: 10.1073/pnas.1203567109
- Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K et al. (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18: 927-937. doi: 10.1016/j.devcel.2010.05.008
- Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. Trends Plant Sci 23: 513-522. doi: 10.1016/j.tplants.2018.04.001
- Kuromori T, Sugimoto E, Shinozaki K (2014) Intertissue signal transfer of abscisic acid from vascular cells to guard cells. Plant Physiol 164: 1587-1592. doi: 10.1104/pp.114.235556
- Leran S, Noguero M, Corratge-Faillie C, Boursiac Y, Brachet C, Lacombe B (2020) Functional characterization of the Arabidopsis abscisic acid transporter NPF4.5 and NPF4.6 in Xenopus oocytes. Front Plant Sci 11: 144. doi: 10.3389/fpls.2020.00144
- Leran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B et al. (2014) A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci 19: 5-9. doi: 10.1016/j.tplants.2013.08.008
- Li H, Yu M, Du XQ, Wang ZF, Wu WH, Quintero FJ, Jin XH, Li HD, Wang Y (2017) NRT1.5/NPF7.3 functions as a proton-coupled H⁺/K⁺ antiporter for K⁺ loading into the xylem in Arabidopsis. Plant Cell 29: 2016-2026. doi: 10.1105/tpc.16.00972
- Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB et al. (2008) Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20: 2514-2528. doi: 10.1105/tpc.108.060244
- McAdam SAM, Brodribb TJ, Ross JJ (2016) Shoot-derived abscisic acid promotes root growth. Plant Cell Environ 39: 652-659. doi: 10.1111/pce.12669
- Merilo E, Yarmolinsky D, Jalakas P, Parik H, Tulva I, Rasulov B, Kilk K, Kollist H (2018) Stomatal VPD response: there is more to the story than ABA. Plant Physiol 176: 851-864. doi: 10.1104/pp.17.00912
- Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jorgensen ME, Olsen CE, Dreyer I, Hedrich R, Geiger D, Halkier BA (2012) NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488: 531-534. doi1: 10.1038/nature11285
- Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF et al. (2009) Abscisic acid inhibits type 2C protein phosphatase via the PYR/PTL family of START proteins. Science 324: 1068-1071. Doi: 10.1126/science.1173041
- Payne RME, Xu D, Foureau E, Carqueijeiro MIST, Oudin A, de Bernonville TD, Novak V, Burow M, Olsen CE, Jones DM et al. (2017) An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat Plants 3: 16208. doi: 10.1038/nplants.2016.208
- Petrasek J, Friml J (2009) Auxin transport routes in plant development. Development 136: 2675-2688.

- Rodriguez PL, Lozano-Juste J, Albert A (2019) PYR/PYL/RCAR ABA receptors. Adv Bot Res 92: 51-82. doi: 10.1242/dev.030353
- Saito H, Oikawa T, Hamamoto S, Ishimaru Y, Kanamori-Sato M, Sasaki-Sekimoto Y, Utsumi T, Chen J, Kanno Y, Masuda S et al. (2015) The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nat Commun 6: 6095. doi: 10.1038/ncomms7095
- Schachtman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13: 281-287. doi: 10.1016/j.tplants.2008.04.003
- Seo M, Marion-Poll A (2019) Abscisic acid metabolism and transport. Adv Bot Res 92: 1-49. doi: 10.1016/bs.abr.2019.04.004
- Shimizu T, Kanno Y, Suzuki H, Watanabe S, Seo M (2021) Arabidopsis NPF4.6 and NPF5.1 control leaf stomatal aperture by regulating abscisic acid transport. Genes 12: 885. doi: 10.3390/genes12060885
- Shimizu T, Miyakawa S, Esaki T, Mizuno H, Masujima T, Koshiba T, Seo M (2015) Live single-cell plant hormone analysis by video-mass spectrometry. Plant Cell Physiol 56: 1287-1296. doi:10.1093/pcp/pcv042
- 清水崇史, 渡邊俊介, 鈴木洋弥, 竹林裕美子, 瀬尾光範 (2020) 植物科学における一細胞質量 分析法: 植物ホルモンの定量と今後の展望. J Mass Spec 68: 26-32. doi: 10.5702/massspec.S20-0
- Tal I, Zhang Y, Jorgensen ME, Pisanty O, Barbosa ICR, Zourelidou M, Regnault T, Crocoll C, Olsen CE, Weinstain R, Schwechheimer C et al. (2016) The Arabidopsis NPF3 protein is a GA transporter. Nat Commun 7: 11486. doi: 10.1038/ncomms11486
- Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581: 2290-2300. doi: 10.1016/j.febslet.2007.04.047
- Veereshlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, Dickstein R (2004) nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defenselike response. Plant Physiol 136: 3692-3702. doi: 10.1104/pp.104.049064
- Watanabe S, Takahashi N, Kanno Y, Suzuki H, Aoi Y, Takeda-Kamiya N, Toyooka K, Kasahara H, Hayashi K, Umeda M et al. (2020) The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism. Proc Natl Acad Sci USA 117: 31500-31509. doi: 10.1073/pnas.2013305117

イメージングで明らかになる 茎頂メリステムにおける生理活性物質の時空間的パターン

木下 温子
 東京都立大学 理学系研究科 生命科学専攻
 〒192-0397 東京都八王子市南大沢 1-1

Spatiotemporal pattern of bioactive substances based on imaging technique

Atsuko Kinoshita

Tokyo Metropolitan University 1-1, Minami-Osawa, Hachioji, Tokyo, Japan 192-0397

Keywords: Doming, floral transition, gibberellin metabolism, shoot apical meristem

DOI: 10.24480/bsj-review.13b7.00230

1. はじめに

陸上植物の茎頂メリステムは,胚発生後の過程において地上部の器官形成を担う重要な 組織である。その秩序だった形態形成は古くから解剖学的に解析されてきた。また近年の分 子生物学の発展により,茎頂メリステムの維持機構で働く生理活性物質の存在や,その作用 機構についても多くの知見が得られている。しかしながら,生理活性物質の局在を細胞レベ ルで明らかにすることは非常に困難であり,また異なる発生ステージにおける生理活性物質 の分布の違いなど未解明の現象は多く残されている。本稿では,古典的解剖学の知見ととも に,近年の分子生物学的成果を紹介し,イメージング技術を基盤として茎頂メリステムの形 態変化や生理活性物質の時空間パターン変化にアプローチする可能性について議論したい。

2. 茎頂メリステムの構造と機能に関わる生理活性物質

2-1. 茎頂メリステムの基本構造

被子植物の茎頂メリステムは垂層分裂を繰り返して層構造を成す外衣 (tunica) と任意の 分裂面をもつ細胞からなる内体 (corpus) により構成される (Schmidt 1924)。外衣は通常 L1, L2 層の 2 層から成り,内体に当たる内側の細胞群は L3 層とも呼ばれる (図 1A)。また,組 織学的切片における染色の違いから,細胞分裂活性の低い中央帯 (Central zone: CZ),さかん に細胞分裂を繰り返し側生器官原基に細胞を供給する周辺部 (Peripheral zone: PZ),これらの 下部に位置する髄状部 (Rib zone: RZ)の領域に大別される (Gifford 1954)(図 1B)。

シロイヌナズナを用いた分子遺伝学的解析により, 茎頂メリステムの恒常性維持には CZ で発現する WUSCHEL (WUS) および CLAVATA3 (CLV3) 間における細胞非自律的な相互遺伝 子発現制御が重要であることが示されている (図 1C)。WUS はホメオドメイン型転写因子を コードし, 茎頂メリステムにおける幹細胞 (stem cell)の性質を決定する因子である (Laux et al. 1996)。WUS は CZ の中でも特に細胞分裂活性の低い,形成中心 (Organizing center: OC)

と呼ばれる領域で発現し、この領域に属する細胞群は幹細胞ニッチとして機能すると考えら れている(Mayer et al. 1998)。一方で、茎頂メリステムの幹細胞は OC の上部の領域に位置す る。この領域に属する細胞は、一定の細胞分裂活性を持ち、自己と同じ幹細胞の性質をもつ 細胞と、PZ へ移行し分化する運命に転じる細胞とに非対称分裂する能力を有するとされる (Laux 2003)。幹細胞で発現する CLV3 は分泌性のペプチドリガンドをコードし、翻訳産物の C 末端に存在する進化的に保存された CLE ドメインが切り出され、化学修飾を受けて成熟型 CLV3 ペプチドとなり、細胞外に分泌される (Fletcher 1999; Kondo et al. 2006; Ohyama et al. 2009)。成熟型 CLV3 ペプチドは、OC 周辺で発現する受容体 CLV1 に認識され、その後細胞 内シグナル伝達を経て WUS の発現を抑制する (Clark et al. 1997; Ogawa et al. 2008; Shinohara and Matsubayashi 2015)。一方で、WUS は原形質連絡を介して幹細胞へと輸送され、CLV3 遺 伝子の制御領域に直接結合してその発現を正に制御することが示されている (Yadav et al. 2011; Daum et al. 2014)。この結果成立する WUS-CLV3 間の負のフィードバック機構により、 茎頂メリステムの恒常性が維持されると考えられている。

図1. 茎頂メリステムの構造

(A) 茎頂メリステムの層構造。垂層分裂を繰り返す L1,L2 層が外衣に,任意の分裂面を もつ L3 層が内体に相当する。(B) 茎頂メリステムの細胞組織帯。CZ:中央部,PZ:周 辺部,RZ: 髄状部,OC:形成中心。(C) WUS-CLV3 フィードバック機構。幹細胞から細 胞外に分泌された CLV3 ペプチドは CLV1 に受容され,その下流で WUS の発現を抑制 する。WUS は原形質連絡を介して幹細胞に移行し,CLV3 の発現を直接誘導する。

2-2. 茎頂メリステムにおける植物ホルモンの機能

前項で紹介した CLV3 は,近年植物で数多く見出されているペプチドホルモンの一種である (Matsubayashi and Sakagami 2006; Betsuyaku et al. 2011) 。これに加え,従来の低分子植物ホルモンも茎頂メリステムの維持に重要な役割を担うことが知られている。植物ホルモンの機能は多岐にわたるが,本稿ではシロイヌナズナを用いて近年明らかにされた,茎頂メリステムの維持機構に関連する機能について紹介する (図 2) 。各植物ホルモンの化学的性質やシグナル伝達機構については本や総説が出版されているのでそちらを参照されたい (浅見 and 柿本 2016)。

サイトカイニンは細胞分裂やシュート再生を誘導する植物ホルモンであり、茎頂メリステムの形成に重要な KNOX 型転写因子である SHOOT MERISTEMLESS (STM) により正に制御される (Jasinski et al. 2005)。シロイヌナズナの茎頂メリステムにおいては、活性型サイトカ

A. Kinoshita - 2

イニン合成の最終段階で機能する LONELY GUY (LOG) 4 遺伝子が L1 層で特異的に発現する ことから、サイトカイニンは L1 層で合成され求基的に拡散することにより濃度勾配を形成す ると考えられている (Chickarmane et al. 2012) 。これに対し、サイトカイニン受容体をコード する AHK4 は OC を含む領域で強く発現し (Gordon et al. 2009) 、さらにその下流で転写活性 化因子として機能する Type-B ARR により WUS の発現が直接誘導されることが明らかとなっ ている (Meng et al. 2017; Xie et al. 2018) 。また、サイトカイニン添加により CLV1 の遺伝子発 現が低下することも確認されており、CLV シグナル伝達系の抑制により間接的に WUS を発 現誘導することも示唆されている (Lindsay et al. 2006; Gordon et al. 2009) 。一方で、WUS は サイトカイニン応答の負の制御因子である Type-A ARR の遺伝子発現を抑制することから、 WUS とサイトカイニン応答の間にもフィードバック機構が成立すると考えられる (Leibfried et al. 2005) 。コンピューターシミュレーションを用いた解析から、正の制御因子であるサイ トカイニンと負の制御因子である CLV3 ペプチドの拮抗作用は、WUS の特異的な発現部位の 決定に重要であることが示されている (Gordon et al. 2009; Chickarmane et al. 2012) 。

オーキシンは器官形成や葉序パターンの形成など茎頂メリステムにおける細胞の分化誘 導に重要であり、主に PZ で機能すると考えられている (Reinhardt et al. 2003; Vernoux et al. 2011) 。とりわけ、オーキシン応答転写因子である MONOPTEROS (MP)/ AUXIN RESPONSE FACTOR (ARF) 5 は、クロマチンリモデリング因子をリクルートすることにより、PZ におけ る遺伝子発現を制御し、器官分化を誘導する重要な因子である (Przemeck et al. 1996; Yamaguchi et al. 2013; Wu et al. 2015; Chung et al. 2019) 。一方で、MP/ARF5 は type-A ARR を コードする *ARR7* および *ARR15* の発現抑制を介してサイトカイニン応答を調整することによ り、茎頂メリステムの幹細胞性維持にも関与することが報告されている (Zhao et al. 2010) 。 更に、遺伝学的な分子ツールとゲノム解析を組み合わせた詳細な解析により、茎頂メリステ ムの幹細胞はオーキシンによる分化誘導を受けないこと、その背景には WUS によるオーキ

図2. 茎頂メリステムにおける 植物ホルモンの機能

(A) 茎頂メリステムにおける 植物ホルモンの分布模式図。オ ーキシン・サイトカイニン応答 やジベレリン合成酵素の発現, *KNOX* 遺伝子の発現部位を模 式的に示す。
(B) 茎頂メリステムにける植物ホルモンのクロストーク。転 調節能をもつ因子を黄色の 網掛けで示す。*は直接的転写 制御を,**はクロマチンリモデ リングを介した転写制御を示す。

A. Kinoshita - 3

シンシグナリングの包括的な遺伝子発現抑制があることが明らかにされた。同時に, 茎頂メ リステムの幹細胞維持には一定レベルのオーキシンシグナリングが必要であることも示され ており,このように極めて精緻なオーキシンシグナリングの制御は標的遺伝子の緩やかなヒ ストン脱アセチル化を介していることが示唆されている (Ma et al. 2019)。このように, WUS-CLV3 間の相互作用を主軸とした茎頂メリステムの幹細胞維持機構は,代表的な植物ホルモ ンであるオーキシンとサイトカイニンによる複数のフィードバックを受け,さらに厳密に制 御されると考えられる。

オーキシンとサイトカイニン以外の植物ホルモンについては、茎頂メリステムにおける機 能がほとんど明らかにされていないが、ジベレリンに関しては複数の植物種において、KNOX 型転写因子により茎頂メリステムにおけるジベレリン代謝酵素の遺伝子発現が制御されるこ とが示されている (Sakamoto et al. 2001a, 2001b; Hay et al. 2002; Chen et al. 2004; Bolduc and Hake 2009)。また、サイトカイニン欠乏状態においてジベレリンのシグナル伝達を構成的に活性化 すると、茎頂メリステムが著しく損なわれることから、KNOX 型転写因子によるサイトカイ ニンとジベレリンの代謝制御が茎頂メリステムの正常な機能に重要であると考えられている (Jasinski et al. 2005)。興味深いことに、近年著者らが行った解析により、茎頂メリステムにお けるジベレリン生合成酵素の遺伝子発現が花成誘導時にメリステムの PZ まで拡大すること が示された (Kinoshita et al. 2020)(図 2A)。この結果は、茎頂メリステムにおける生理活性物 質のバランスが植物の発生ステージに応じて変化しうることを示唆している。

3. 植物の成長相転換を制御する生理活性物質

3-1. フロリゲンによる光周期花成

植物はその発生ステージに応じて異なる形態を示す。花成は、植物が栄養生長から生殖生 長に転じる重要な成長相転換であり、光周期(日長)、気温、齢、植物ホルモンなど、複数の 外的・内的因子によって制御される(図3)。これらの外的・内的因子はそれぞれ情報伝達経 路を介して FLOWERING LOCUST (FT)、SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC) 1、LEAFY(LFY)などの経路統合遺伝子へと集約され、最終的には茎頂メリステムにお いて LFY、APETALA (AP) 1、 FRUITFULL (FUL)などの花芽形成決定遺伝子を活性化するこ とにより、花メリステムの形成を誘導する(Andrés and Coupland 2012)。

光周期は花成誘導に重要な外的因子の一つであり、春化を必要としない Columbia などの シロイヌナズナ実験室栽培系統ではとりわけ強力な花成誘導能を持つ。このシグナル伝達経 路で特に重要な役割を持つのが、葉から茎頂へ情報を伝える長距離移行シグナルのフロリゲ ンである(図3)。シロイヌナズナやイネの解析から、フロリゲンの実体はFT/Hd3a タンパク 質であることが示されている (Corbesier et al. 2007; Tamaki et al. 2007; Jaeger and Wigge 2007; Mathieu et al. 2007)。シロイヌナズナでは長日条件下で葉の維管束篩部細胞における FT 遺伝 子の発現が誘導され、その翻訳産物である FT タンパク質は茎頂に輸送される。茎頂に到達し た FT タンパク質は 14-3-3 タンパク質を介して bZIP 型転写因子である FD と相互作用し、 *AP1* を代表とする花芽形成遺伝子を活性化することにより花メリステムの形成を誘導する (Abe et al. 2005; Wigge et al. 2005; Taoka et al. 2011)。近年、改変型 BiFC を用いたイメージン グ解析により、花成誘導時の茎頂メリステムにおけるフロリゲン複合体 (FT-FD 複合体)の

挙動が詳細に検証され, AP1 の発現が開始す る原基形成予定部位 (floral anlagen) におい てフロリゲン複合体が共局在すること,ま たフロリゲン複合体は花成誘導後速やかに 減少することが明らかにされた (Abe et al. 2019)。この知見は,茎頂メリステムにおけ るフロリゲン複合体の時空間的な作用が極 めてダイナミックに変化していることを示 唆している。

3-2. フロリゲンとアンチフロリゲン による標的遺伝子の制御

FT は phosphatidylethanolamine binding protein (PEBP) ファミリーに属する約 20kDa のタンパク質であり,花成の誘導因子とし て機能する。一方,同じ PEBP ファミリーに

図3.シロイヌナズナにおける花成制御 外的・内的因子の情報は葉で受容され,経 路統合遺伝子である FT の遺伝子発現に集 約される。FT タンパク質は長距離移行シグ ナルとして茎頂に輸送され,メリステムで 発現する FD と相互作用してフロリゲン複 合体を形成する。フロリゲン複合体の下流 で経路統合遺伝子である SOC1 や LFY の発 現が誘導され,最終的には原基形成予定部 位において花芽形成決定遺伝子である API の発現を誘導することにより花器官の分化 を決定する。

属する TERMINAL FLOWER (TFL) 1 は花成抑制因子 (アンチフロリゲン) として機能するこ とが知られている (Bradley et al. 1997) 。近年,ゲノムワイドな標的配列解析や薬剤処理によ る発現誘導実験の結果から,FT と TFL1 が FD との複合体形成において競合的に働き,花成 時期を制御していることが明らかとなった (Collani et al. 2019; Goretti et al. 2020; Zhu et al. 2020) 。特に,花芽形成のマスターレギュレーターをコードする *LFY* は,FT-FD 複合体およ び TFL1-FD 複合体の共通の標的遺伝子であり,それぞれ正および負の制御を受けることによ り,花成の時期を制御すると考えられる。また,TFL1-FD 複合体はアブシジン酸,サイトカ イニン,ブラシノステロイド,オーキシン,ストリゴラクトンなどの植物ホルモンや,糖の シグナル伝達に関与する遺伝子の抑制にも関与することが示された (Zhu et al. 2020) 。これ らの生理活性物質は,花芽の形成に促進的に働く一方,側枝の形成を抑制する働きを持つこ とから,TFL1 は花成の時期だけでなく植物の花序の分枝形態も制御することが示唆されてい る (図 4A) 。

3-3. ジベレリンによる花成誘導

植物ホルモンのジベレリンは、ロゼット植物を中心とする長日植物において、花成誘導に 一定の効果を持つとされる内生のシグナルである (Bao et al. 2020)。シロイヌナズナでは、ジ ベレリン欠損変異体が短日条件下で花成に至らないことから、特に非誘導条件における花成 に必須であると考えられている (Wilson et al. 1992)。組織特異的プロモーターを用いた解析 から、ジベレリンは葉および茎頂の両組織において花成に促進的に働くことが明らかにされ た (Porri et al. 2012; Galvão et al. 2012)(図 3)。ジベレリンは葉での FT 遺伝子発現を誘導する 一方、茎頂メリステムにおいては経路統合遺伝子である SOC1 や LFY の遺伝子発現を促進す ることが示されている (Moon et al. 2003; Eriksson et al. 2006; Bao et al. 2019) 。しかしながら, 長日条件下においてはフロリゲンによる強力な花成誘導の効果に比べ,その機能は限定的で ある。

図4. 異なる発生ステージにおけるメリステムのアイデンティティ

(A) 成長相転換期におけるメリステムのアイデンティティ決定。FD のパートナーである FT と TFL1 のバランスは,花成の時期や器官原基のアイデンティティ決定に作用する。また、ジベレリンの濃度も FT/TFL1 とは異なるメカニズムで花成の時期や器官原基のアイデンティティ決定に関与する。(B) 生殖成長期におけるメリステムのアイデンティティ決定。TFL1(青) は花序および側芽のメリステムで発現し、LFY/AP1(橙)の発現を抑制することにより花メリステムへの転換を抑制する。LFY/AP1は花メリステムのアイデンティティを決定し、花器官の分化を誘導する。WUS(赤) により誘導される AG は KNU の発現誘導を介して WUS を抑制し、この結果花メリステムの幹細胞が維持されず終結する。

4. 植物の成長相転換とメリステムの性質転換

4-1. メリステムと発生ステージ

茎頂メリステムの無限性は、植物がその一生を通じて新たな器官を形成し続けるために必 須である。その意義は栄養成長期において特に顕著であるが、生殖成長期においてはその限 りではない。植物は、その繁殖戦略により生殖成長期におけるメリステムの無限性、有限性 を段階的に制御し、その結果として多様な花序形態を生み出している (Sablowski 2007; Benlloch et al. 2015; Périlleux et al. 2019)。

生殖成長期に形成される花原基は幹細胞を有し、複数の花器官を形成する能力をもつことから花メリステムと呼ばれる。一般的に、花メリステムは有限性のメリステムであり、一定の花器官を形成した後に幹細胞の性質が失われ、終結する。この過程に関しては、花メリステムのアイデンティティーが確立した後にWUSとLFYによって誘導されるAGAMOUS(AG)転写因子が、ヒストン修飾を介したKNUCKLE(KNU)発現誘導によりWUSの発現を抑制するという、時間差制御機構が明らかにされている(Yanofsky et al. 1990; Lenhard et al. 2001; Sun et al. 2009, 2014)。チューリップやスミレのように単頂花序を持つ植物では、花成にともない茎頂メリステムは花メリステムへと転換し、これはすなわち主茎における無限成長の終結を意味する。一方で、多くの植物種では花成にともない茎頂メリステムは花序メリステムへと転換し、この花序メリステムから側枝あるいは花メリステムが形成される。花序形態によっ

て期間に相違はあるものの、シロイヌナズナのような総状花序をもつ種では、花序メリステムにおいても WUS-CLV3 間の負のフィードバック機構により幹細胞が維持されており、ほぼ永続的に花メリステムを形成する能力をもつ(図 4B)。成長相転換にともない茎頂メリステムが花序メリステムあるいは花メリステムのいずれに転換するのか、また花序メリステムにおける無限性や側方原基のアイデンティティがどのように制御されているのか。これらの点は、生殖成長期におけるメリステムの性質転換と密接な関係があり、また植物における花序形態の多様性を理解する上で重要な要素である。

4-2. 生殖成長期におけるメリステムのアイデンティティ決定

TFL1 は花成抑制因子として働く一方,メリステムのアイデンティティ決定にも作用する ことが知られている。TFL1 は茎頂メリステムの CZ で発現し,その発現レベルは花成に先立 って顕著に上昇する (Bradley et al. 1997) 。TFL1 の機能欠損変異体では花序メリステムが早 期に花メリステムへと転換し終結することにより,有限花序様の形態を示すことが観察され ている。遺伝学的な機能解析により,TFL1 は花メリステムのアイデンティティ決定に必要な LFY や AP1 など MADS ボックス型転写因子をコードする遺伝子の発現を花序メリステムで 抑制する機能を持つことが示された。一方で,花メリステムで強く発現する LFY および AP1 は TFL1 の発現を抑制する機能を持ち,このような相互に抑制的な遺伝子発現制御機構によ り,花序メリステムと花メリステムのアイデンティティが確立される (Ratcliffe et al. 1999)(図 4B)。

生殖成長期において、花序メリステムからは花メリステムのみならず、苞葉の腋芽から側 枝として新たな花序メリステムも形成される。シロイヌナズナでは、生殖成長期の前期には 茎生葉および側枝を形成し、その後花メリステムを形成する後期へと移行する (Pouteau and Albertini 2011)。生殖成長前期から後期への移行には、植物ホルモンのジベレリンの関与が示 唆されている。3-3 で述べたように、シロイヌナズナにおいてジベレリンは栄養成長期から 生殖成長期への転換に促進的に働く。一方で、ジベレリンは側枝の形成から花メリステムの 形成への転換には抑制的に働き、ジベレリンが高蓄積した遺伝学的背景では側枝の数が増大 することが報告されている。側枝と花メリステムのアイデンティティ決定には、ジベレリン シグナリングの標的因子である DELLA タンパク質と SQUAMOSA PROMOTER-BINDING LIKE (SPL) 転写因子による協調的な *AP1* 遺伝子の発現制御があることが示されている (Yamaguchi et al. 2014) (図 2B)。上記のように、ジベレリンもまた TFL1 とは異なる作用機構 で花序の分枝形態を制御しうると考えられる (図 4A)。

4-3. 成長相転換にともなうメリステムの形態変化

前項で紹介したように、栄養成長期から生殖成長期への転換は、茎頂メリステムから花序 メリステムあるいは花メリステムへの転換と捉えられる。この転換の過程には、メリステム における遺伝子発現プロファイルのみならず、形態的にも大規模な変化が起こることが明ら かにされている (Kwiatkowska 2008)。 成長相転換にともなうメリステムの形態変化のうちで最も顕著なものが、細胞分裂活性の 変化である。組織切片を用いた古典的な解剖学的解析から、花成の日長要求性や花序形態に よらず様々な植物種において、花成にともない茎頂メリステムの細胞分裂活性が上昇するこ とが報告されている (Kwiatkowska 2008)。特に、細胞分裂活性が低いとされている CZ にお いて細胞分裂の活性化が認められ、細胞組織帯の構造が変化する様子が観察されている (Bodson 1975; Marc and Palmer 1982)。一方で、メリステムの内部の細胞は順々に液胞化し、 その結果として茎頂メリステムのサイズは全体的に大きくなり、しばしば高いドーム状の構 造(ドーミング)へと変化する。また、細胞分裂活性の変化の他にも、アブラナ科のシロガラ シにおいて花成にともなう原形質連絡の増大や、細胞周期の同調の例などが報告されている (Ormenese et al. 2000, 2002)。

このような細胞分裂活性やメリステムの形態変化の例は数多く報告されているにも関わ らず、その分子メカニズムについてはほとんど明らかにされていない。その原因として、こ れらの知見が主に古典的な解剖学的知見に基づいており、遺伝学的な検証が欠如しているこ とが挙げられる。モデル植物のシロイヌナズナにおいても、領域ごとの細胞分裂活性は検証 されているものの,その分子機構については十分検証されているとは言い難い (Laufs et al. 1998; Jacqmard et al. 2003; Reddy et al. 2004) 。近年, トマトにおいてアンチフロリゲンをコー ドする SELF PRUNING (SP) の発現抑制が解除されることにより早期にドーミングが起こる 変異体が単離されており、花成にともなうアンチフロリゲンの増大がメリステムのサイズを 制御する可能性が示唆されている (Tal et al. 2017)。また,筆者らは 3D 画像解析を用いて花 成にともなう茎頂メリステムの形態変化を定量的に解析し、花成に促進的に働く FT とジベ レリンの関与を検証した。その結果、長日条件における花成の誘導に際しメリステムの細胞 数と細胞サイズがいずれも増大すること、またこの過程には FT とジベレリンの両者が寄与 していることを報告した (Kinoshita et al. 2020)。これらの知見は、メリステムの形態が大き く変化する成長相転換期において、メリステムの恒常性を撹乱する作用をもつ生理活性物質 が存在することを示唆しており、このような発生ステージ依存的な制御機構に関してはさら なる遺伝学的検証の余地が残されていると考えられる。

5. まとめ

本稿では、茎頂メリステムにおける様々な生理活性物質の局在や機能について紹介した。 ここでは取り上げなかったが、CLE40 や EPFL など茎頂メリステムで機能することが示唆さ れているペプチドホルモンも多く存在する (Uchida et al. 2013; Zhang et al. 2021; Schlegel et al. 2021)。このように、茎頂メリステムという微細な構造の中では、実に多くの生理活性物質が 細胞の内外を行き交い、しかもその局在や濃度は発生ステージに応じてダイナミックに変動 している。低分子の生理活性物質の検出は技術的に困難であると考えられているが、機能的 な生合成酵素の局在や、シグナリングレポーターの利用、さらにタンパク質間相互作用を利 用した検出系の開発など、イメージング技術を基盤としたアプローチにより、その一端が徐々 に明らかになりつつある。今後も、新たな技術の開発と遺伝学的アプローチの融合により、 異なる発生ステージにおける生理活性物質の挙動が明らかになると期待される。

謝辞

本稿の執筆にあたっては,JSPS 海外特別研究員奨励費,アレクサンダー・フォン・フンボ ルト財団,公益社団法人 内藤記念科学振興財団の助成をいただきました。この場を借りて 御礼申し上げます。

引用文献

- Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056. doi: 10.1126/science.1115983
- Abe M, Kosaka S, Shibuta M, Nagata K, Uemura T, Nakano A, Kaya H (2019) Transient activity of the florigen complex during the floral transition in arabidopsis thaliana. Development 146:dev171504. doi: 10.1242/dev.171504
- Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639. doi: 10.1038/nrg3291
- 浅見忠男, 柿本辰男 (2016) 新しい植物ホルモンの科学 第3版. 講談社, 東京
- Bao S, Hua C, Huang G, Cheng P, Gong X, Shen L, Yu H (2019) Molecular Basis of Natural Variation in Photoperiodic Flowering Responses. Dev Cell 50:90-101.e3. doi: 10.1016/j.devcel.2019.05.018
- Bao S, Hua C, Shen L, Yu H (2020) New insights into gibberellin signaling in regulating flowering in Arabidopsis. J Integr Plant Biol 62:118–131. doi: 10.1111/jipb.12892
- Benlloch R, Berbel A, Ali L, Gohari G, Millán T, Madueño F (2015) Genetic control of inflorescence architecture in legumes. Front Plant Sci 6:1–14. doi: 10.3389/fpls.2015.00543
- Betsuyaku S, Sawa S, Yamada M (2011) The Function of the CLE Peptides in Plant Development and Plant-Microbe Interactions. The Arabidopsis Book 2011:e0149. doi: 10.1199/tab.0149
- Bodson M (1975) Variation in the Rate of Cell Division in the Apical Meristem of Sinapis alba During Transition to Flowering. Ann Bot 39:547–554. doi: 10.1093/oxfordjournals.aob.a084965
- Bolduc N, Hake S (2009) The Maize Transcription Factor KNOTTED1 Directly Regulates the Gibberellin Catabolism Gene ga2ox1. Plant Cell 21:1647–1658. doi: 10.1105/tpc.109.068221
- Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83. doi: 10.1126/science.275.5296.80
- Chen H, Banerjee AK, Hannapel DJ (2004) The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J 38:276–284. doi: 10.1111/j.1365-313x.2004.02048.x.
- Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM (2012) Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 109:4002–4007. doi; 10.1073/pnas.1200636109
- Chung Y, Zhu Y, Wu MF, Simonini S, Kuhn A, Armenta-Medina A, Jin R, Østergaard L, Gillmor CS, Wagner D (2019) Auxin Response Factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS. Nat Commun 10:1–11. doi: 10.1038/s41467-019-08861-3

- Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in arabidopsis. Cell 89:575–585. doi: 10.1016/s0092-8674(00)80239-1
- Collani S, Neumann M, Yant L, Schmid M (2019) FT Modulates Genome-Wide DNA-Binding of the bZIP Transcription Factor FD. Plant Physiol 180:367–380. doi: 10.1104/pp.18.01505
- Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C et al. (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. doi: 10.1126/science.1141752
- Daum G, Medzihradszky A, Suzaki T, Lohmann JU (2014) A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci U S A 111:14619–14624. doi: 10.1073/pnas.1406446111
- Eriksson S, Böhlenius H, Moritz T, Nilsson O (2006) GA4 Is the Active Gibberellin in the Regulation of LEAFY Transcription and Arabidopsis Floral Initiation. Plant Cell 18:2172–2181. doi: 10.1105/tpc.106.042317
- Fletcher JC (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914. doi: 10.1126/science.283.5409.1911
- Galvão VC, Horrer D, Küttner F, Schmid M (2012) Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139:4072–4082. doi: 10.1242/dev.080879
- Gifford EM (1954) The shoot apex in angiosperms. Bot Rev 20:477-529. doi: 10.1007/bf02957569
- Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci 106:16529–16534. doi: 10.1073/pnas.0908122106
- Goretti D, Silvestre M, Collani S, Langenecker T, Méndez C, Madueño F, Schmid M (2020) TERMINAL FLOWER1 Functions as a Mobile Transcriptional Cofactor in the Shoot Apical Meristem. Plant Physiol 182:2081–2095. doi; 10.1104/pp.19.00867
- Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M (2002) The Gibberellin Pathway Mediates KNOTTED1-Type Homeobox Function in Plants with Different Body Plans. Curr Biol 12:1557– 1565. doi: 10.1016/s0960-9822(02)01125-9
- Jacqmard A, Gadisseur I, Bernier G (2003) Cell Division and Morphological Changes in the Shoot Apex of Arabidopsis thaliana during Floral Transition. Ann Bot 91:571–576. doi: 10.1093/aob/mcg053
- Jaeger KE, Wigge PA (2007) FT Protein Acts as a Long-Range Signal in Arabidopsis. Curr Biol 17:1050–1054. doi: 10.1016/j.cub.2007.05.008
- Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565. doi: 10.1016/j.cub.2005.07.023
- Kinoshita A, Vayssières A, Richter R, Sang Q, Roggen A, Van Driel AD, Smith RS, Coupland G (2020) Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of arabidopsis. Elife 9:1–29. doi: 10.7554/elife.60661
- Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide

encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313:845-848. doi: 10.1126/science.1128439

- Kwiatkowska D (2008) Flowering and apical meristem growth dynamics. J Exp Bot 59:187–201. doi: 10.1093/jxb/erm290
- Laufs P, Grandjean O, Jonak C, Kiêu K, Traas J (1998) Cellular Parameters of the Shoot Apical Meristem in Arabidopsis. Plant Cell 10:1375–1389. doi: 10.1105/tpc.10.8.1375
- Laux T (2003) The Stem Cell Concept in Plants: A Matter of Debate. Cell 113:281–283. doi: 10.1016/s0092-8674(03)00312-x
- Laux T, Mayer KFX, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96. doi: 10.1242/dev.122.1.87
- Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175. doi: 10.1038/nature04270
- Lenhard M, Bohnert A, Jürgens G, Laux T (2001) Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions between WUSCHEL and AGAMOUS. Cell 105:805–814. doi: 10.1016/s0092-8674(01)00390-7
- Lindsay DL, Sawhney VK, Bonham-Smith PC (2006) Cytokinin-induced changes in CLAVATA1 and WUSCHEL expression temporally coincide with altered floral development in Arabidopsis. Plant Sci 170:1111–1117. doi: 10.1016/j.plantsci.2006.01.015
- Ma Y, Miotk A, Šutiković Z, Ermakova O, Wenzl C, Medzihradszky A, Gaillochet C, Forner J, Utan G, Brackmann K et al. (2019) WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis. Nat Commun 10:5093. doi: 10.1038/s41467-019-13074-9
- Marc J, Palmer JH (1982) Changes in Mitotic Activity and Cell Size in the Aical Meristem of HElianthus annuus L. during the Transition to Flowering. Am J Bot 69:768–775. doi; 10.1002/j.1537-2197.1982.tb13317.x
- Mathieu J, Warthmann N, Küttner F, Schmid M (2007) Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis. Curr Biol 17:1055–1060. doi: 10.1016/j.cub.2007.05.009
- Matsubayashi Y, Sakagami Y (2006) Peptide Hormones in Plants. Annu Rev Plant Biol 57:649–674. doi: 10.1146/annurev.arplant.56.032604.144204
- Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem. Cell 95:805–815. doi: 10.1016/s0092-8674(00)81703-1
- Meng WJ, Cheng ZJ, Sang YL, Zhang MM, Rong XF, Wang ZW, Tang YY, Zhang XS (2017) Type-B ARABIDOPSIS RESPONSE REGULATORs Specify the Shoot Stem Cell Niche by Dual Regulation of WUSCHEL. Plant Cell 29:1357–1372. doi: 10.1105/tpc.16.00640
- Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623. doi: 10.1046/j.1365-313x.2003.01833.x

A. Kinoshita - 11

- Ogawa M, Shinohara H, Sakagami Y, Matsubayash Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294. doi: 10.1126/science.1150083
- Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 2009 58 5:578–580. doi: 10.1038/nchembio.182
- Ormenese S, Havelange A, Bernier G, Van der Schoot C (2002) The shoot apical meristem of Sinapis alba L. expands its central symplasmic field during the floral transition. Planta 215:67–78. doi: 10.1007/s00425-002-0746-0
- Ormenese S, Havelange A, Deltour R, Bernier G (2000) The frequency of plasmodesmata increases early in the whole shoot apical meristem of Sinapis alba L. during floral transition. Planta 211:370– 375. doi: 10.1007/s004250000294
- Périlleux C, Bouché F, Randoux M, Orman-Ligeza B (2019) Turning Meristems into Fortresses. Trends Plant Sci 24:431–442. doi: 10.1016/j.tplants.2019.02.004
- Porri A, Torti S, Romera-Branchat M, Coupland G (2012) Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139:2198–2209. doi: 10.1242/dev.077164
- Pouteau S, Albertini C (2011) An assessment of morphogenetic fluctuation during reproductive phase change in Arabidopsis. Ann Bot 107:1017–1027. doi: 10.1093/aob/mcr039
- Przemeck GKH, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200:229–237. doi: 10.1007/bf00208313
- Ratcliffe OJ, Bradley DJ, Coen ES (1999) Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120. doi: 10.1242/dev.126.6.1109
- Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131:4225–4237. doi: 10.1242/dev.01261
- Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260. doi: 10.1038/nature02081
- Sablowski R (2007) Flowering and determinacy in Arabidopsis. J Exp Bot 58:899–907 doi: 10.1093/jxb/erm002
- Sakamoto T, Kamiya N, Ueguehi-Tanaka M, Iwahori S, Matsuoka M (2001a) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581. doi: 10.1101/gad.867901
- Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001b) Expression of a Gibberellin 2-Oxidase Gene around the Shoot Apex Is Related to Phase Transition in Rice. Plant Physiol 125:1508–1516. doi: 10.1104/pp.125.3.1508
- Schlegel J, Denay G, Wink R, Pinto KG, Stahl Y, Schmid J, Blümke P, Simon R (2021) Control of arabidopsis shoot stem cell homeostasis by two antagonistic cle peptide signalling pathways. Elife 10:e70934. doi: 10.7554/elife.70934

A. Kinoshita - 12

Schmidt A (1924) Histologische studien an phanerogamen vegetationspunkten. Bot Arch 8:345-404

- Shinohara H, Matsubayashi Y (2015) Reevaluation of the CLV3-receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view. Plant J 82:328–336. doi: 10.1111/tpj.12817
- Sun B, Looi LS, Guo S, He Z, Gan ES, Huang J, Xu Y, Wee WY, Ito T (2014) Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells. Science 343:1248559. doi: 10.1126/science.1248559
- Sun B, Xu Y, Ng KH, Ito T (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 23:1791–1804. doi: 10.1101/gad.1800409
- Tal L, Friedlander G, Gilboa NS, Unger T, Gilad S, Eshed Y (2017) Coordination of Meristem Doming and the Floral Transition by Late Termination, a Kelch Repeat Protein. Plant Cell 29:681. doi: 10.1105/tpc.17.00030
- Tamaki S, Matsuo S, Hann LW, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036. doi: 10.1073/pnas.1417623112
- Taoka KI, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S et al. (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332–335. doi: 10.1038/nature10272
- Uchida N, Shimada M, Tasaka M (2013) ERECTA-Family Receptor Kinases Regulate Stem Cell Homeostasis via Buffering its Cytokinin Responsiveness in the Shoot Apical Meristem. Plant Cell Physiol 54:343–351. doi: 10.1093/pcp/pcs109
- Vernoux T, Brunoud G, Farcot E, Morin V, van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D et al. (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508. doi: 10.1038/msb.2011.39
- Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059. doi: 10.1126/science.1114358
- Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol 100:403–408. doi; 10.1104/pp.100.1.403
- Wu MF, Yamaguchi N, Xiao J, Bargmann B, Estelle M, Sang Y, Wagner D (2015) Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. Elife 4:e09269. doi: 10.7554/elife.09269
- Xie M, Chen H, Huang L, O'Neil RC, Shokhirev MN, Ecker JR (2018) A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nat Commun 9:1–13. doi: 10.1038/s41467-018-03921-6
- Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, Venugopala Reddy G (2011) WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25:2025– 2030. doi: 10.1101/gad.17258511
- Yamaguchi N, Winter CM, Wu MF, Kanno Y, Yamaguchi A, Seo M, Wagner D (2014) Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344:638–

641. doi: 10.1126/science.1250498

- Yamaguchi N, Wu MF, Winter CM, Berns MC, Nole-Wilson S, Yamaguchi A, Coupland G, Krizek BA, Wagner D (2013) A Molecular Framework for Auxin-Mediated Initiation of Flower Primordia. Dev Cell 24:271–282. doi: 10.1016/j.devcel.2012.12.017
- Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmannt KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39. doi: 10.1038/346035a0
- Zhang L, Gennaro D De, Lin G, Chai J, Shpak ED (2021) ERECTA family signaling constrains CLAVATA3 and WUSCHEL to the center of the shoot apical meristem. Development 148:dev189753. doi: 10.1242/dev.189753/237495
- Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU (2010) Hormonal control of the shoot stem-cell niche. Nature 465:1089–1092. doi: 10.1038/nature09126
- Zhu Y, Klasfeld S, Jeong CW, Jin R, Goto K, Yamaguchi N, Wagner D (2020) TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nat Commun 11:1– 12. doi: 10.1038/s41467-020-18782-1